HYPERSOFT GENERALIZED COMPACTNESS AND CONNECTEDNESS IN HYPERSOFT TOPOLOGICAL SPACES

Authors:

S. Mythili,A. Arokialancy,

DOI NO:

https://doi.org/10.26782/jmcms.2025.08.00010

Keywords:

Hypersoft generalized compactness,Hypersoft generalized connectedness,Hypersoft topological spaces,

Abstract

In this paper, we have introduced the notion of hypersoft generalized compactness and generalized connectedness in hypersoft topological spaces. We have also defined the core concepts and explored the key properties that connect them. Finally, the notion of hypersoft generalized compactness and connectedness of hypersoft topological spaces is proposed, and some related properties are discussed.

Refference:

I. Abbas, M.; Murtaza, G.; Smarandache, F. ‘Basic operations on hypersoft sets and hypersoft point’. Neutrosophic Sets Syst. 2020,35, 407-421. https://digitalrepository.unm.edu/nss_journal/vol35/iss1/23/
II. Aygunoglu A and H. Aygun, ‘Some notes on soft topological spaces’, Neural Computing and Applications, vol. 21, no. 1, pp. 113–119, 2012. https://www.researchgate.net/publication/238497517_Some_notes_on_soft_topological_spaces
III. Baravan A. Asaad 1 , Sagvan Y. Musa ‘Continuity and Compactness via Hypersoft Open Sets’, International Journal of Neutrosophic Science (IJNS) Vol. 19, No. 02, PP. 19-29, 2022 19- 29 https://www.researchgate.net/publication/364979611_Continuity_and_Compactness_via_Hypersoft_Open_Sets
IV. Moldstov D ‘Soft Set Theory- first results’, Computers an Mathematics with applications, vol.37, no 4-7, pp, 19-31, 1999. https://www.researchgate.net/publication/222782394_Soft_set_theory-First_results
V. S. Y. Musa and B. A. Asaad, ‘Hypersoft topological spaces’, Neutrosophic Sets and Systems, vol. 49, pp.397-415, 2022. https://fs.unm.edu/nss8/index.php/111/article/view/2493
VI. S. Y. Musa and B. A. Asaad, ‘Connectedness on hypersoft topological spaces’, Neutrosophic Sets and Systems, vol. 51, pp. 666-680, 2022 https://fs.unm.edu/nss8/index.php/111/article/view/2591
VII. Mythili S, Arokialancy A, ‘Hypersoft Generalized Continuous Functions and irresolute maps in Hypersoft Topological spaces’, International Conference on Emerging Trends in Mathematics and statistics. Pg:487-494, ISBN: 9789361288784.
VIII. Mythili .S and Arokialancy.A, ‘Hypersoft Generalized Closed Sets in Hypersoft Topological Spaces’ Indian Journal of Natural Sciences Vol.14, Issue 80, Oct 2023 International Bimonthly (Print) – Open Access ISSN: 0976 – 0997 pg:63127-63131.
IX. Saeed, M., Ahsan, M. Siddique, M.; Ahmad, M. ‘A study of the fundamentals of hypersoft set theory’. Inter.J. Sci. Eng. Res. 2020, 11. https://www.researchgate.net/publication/338669709_A_Study_of_The_Fundamentals_of_Hypersoft_Set_Theory
X. Saeed M, A. Rahman, M. Ahsan and F. Smarandache, ‘An inclusive Study on Fundamentals of Hypersoft Set. In: Theory and Application of Hypersoft Set’, 2021 ed., Pons Publishing House: Brussels, Belgium, 2021, pp. 1-23. https://www.researchgate.net/publication/349453968_An_Inclusive_Study_on_Fundamentals_of_Hypersoft_Set
XI. Saeed M, M. Ahsan and A. Rahman, ‘A novel approach to mappings on hypersoft classes with application. In: Theory and Application of Hypersoft Set’, 2021 ed., Pons Publishing House: Brussels, Belgium,2021, pp. 175-191 https://www.researchgate.net/publication/349453894_A_Novel_Approach_to_Mappings_on_Hypersoft_Classes_with_Application
XII. Sagvan Y. Musa, Baravan A. Asaad, ‘Hypersoft Topological Spaces’, Neutrosophic Sets and Systems, Vol. 49, 2022 401 https://digitalrepository.unm.edu/nss_journal/vol49/iss1/26/
XIII. Smarandache, F. ‘Extension of soft set to hypersoft set, and then to Plithogenic hypersoft set’. Neutrosophic Sets Syst. 2018,22, 168-170. https://www.researchgate.net/publication/339128353_Extension_of_Soft_Set_to_Hypersoft_Set_and_then_to_Plithogenic_Hypersoft_Set_Extension_of_Soft_Set_to_Hypersoft_Set_and_then_to_Plithogenic_Hypersoft_Set

View Download