Authors:
K. R. Karthikeyan,Elangho Umadevi,G. Thirupathi,Dharmaraj Mohankumar,DOI NO:
https://doi.org/10.26782/jmcms.2025.08.00001Keywords:
Analytic function,exponentially convex functions,multiplicative derivative,starlike functions,Abstract
Studies in univalent function theory comprising the exponential of differential characterizations are rarely considered. The prominent study in this direction is the study of so-called -exponentially convex functions. Here we study a class of analytic functions which satisfy an analytic characterization influenced by the definition of the multiplicative derivative and -exponentially convex functions. Integral representation and coefficient inequalities of the defined function class are the main results of the paper.Refference:
I. Arango, J. H., Mejía, D., and Ruscheweyh, S. (1997). Exponentially convex univalent functions, Complex Variables Theory Appl. 33, no.~1-4, 33–50. 10.1080/17476939708815010.
II. Breaz, D., Karthikeyan, K. R., and Murugusundaramoorthy, G. (2024). Applications of Mittag–Leffler functions on a subclass of meromorphic functions influenced by the definition of a non-Newtonian derivative, Fractal Fract. 8 (9), 509. 10.3390/fractalfract8090509
III. Carathèodory, C. (1907). Ȕber den Variabilitȁtsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64(1), 95–115. 10.1007/BF01449883
IV. Cho, N. E., Swaminathan, A., and Wani, L. A. (2022). Radius constants for functions associated with a limacon domain, J. Korean Math. Soc. 59 (2), 353–365. 10.4134/JKMS.j210246
V. Efraimidis, I. (2016). A generalization of Livingston’s coefficient inequalities for functions with positive real part, J. Math. Anal. Appl. 435 (1), 369–379. 10.1016/j.jmaa.2015.10.050
VI. Karthikeyan, K. R. and Murugusundaramoorthy, G. (2024). Properties of a class of analytic functions influenced by multiplicative calculus, Fractal Fract. 8(3), 131. 10.3390/fractalfract8030131.
VII. Karthikeyan, K. R. and Varadharajan, S. (2024). A class of analytic functions with respect to symmetric points involving multiplicative derivative, Communications on Applied Nonlinear Analysis, 31(5s), 540–551. 10.52783/cana.v31.1089
VIII. B. Khan, J. Gong, M. G. Khan\ and\ F. Tchier, Sharp coefficient bounds for a class of symmetric starlike functions involving the balloon shape domain, Heliyon, {\bf 10} (2024), no.~ 19, e38838. 10.1016/j.heliyon.2024.e38838.
IX. Ma, W. C. and Minda, D. (1992). A unified treatment of some special classes of univalent functions, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992)}, 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA,
X. Murugusundaramoorthy, G., Khan, M. G., Ahmad, B., Mashwani, V. K., Abdeljawad, T., and Salleh, Z. (2023). Coefficient functionals for a class of bounded turning functions connected to three leaf function, Journal of Mathematics and Computer Science, 28(3), 213–223. 10.22436/jmcs.028.03.01
XI. Pommerenke, C. (1975). Univalent functions, Studia Mathematica/Mathematische Lehrbȕcher, Band XXV, Vandenhoeck & Ruprecht, Gőttingen. 1975. https://books.google.com.om/books?id=wi_vAAAAMAAJ.
XII. Ponnusamy, S., Vasudevarao, A., and Vuorinen, M. K. (2011). Region of variability for exponentially convex univalent functions, Complex Anal. Oper. Theory 5(3), 955–966. https://doi.org/10.1007/s11785-010-0089-y
XIII. Raina, R. K., and Sokół, J. (2015). Some properties related to a certain class of starlike functions, C. R. Math. Acad. Sci. Paris, 353(11), 973–978. 10.1016/j.crma.2015.09.011
XIV. Sathish Srinivasan, R., Ezhilarasi, R., Karthikeyan, K. R. and Sudharsan, T. V. (2025). Coefficient bounds for certain subclasses of quasi-convex functions associated with Carlson-Shaffer operator, Journal of Mechanics of Continua and Mathematical Sciences, 20(3), 198–207. 10.26782/jmcms.2025.03.00013
XV. Sharma, P., Sivasubramanian, S., and Cho, N. E. (2024). Initial coefficient bounds for certain new subclasses of bi-Bazilevič functions and exponentially bi-convex functions with bounded boundary rotation, Axioms 13(1), 25. 10.3390/axioms13010025
XVI. Sunil Varma, S., Rosy, T., and Vadivelan, U. (2020). Radius of exponential convexity of certain subclass of analytic functions, Creat. Math. Inform. 29(1), 109—112. 10.37193/CMI.2020.01.13