THERMOPHORESIS AND BROWNIAN MOTION EFFECTS ON HEAT AND MASS TRANSFER IN MIXED CONVECTIVE MHD HYBRID NANOFLUID FLOW PAST AN INCLINED MAGNETIC STRETCHING SHEET WITH CHEMICAL REACTION AND HEAT SOURCE

Authors:

David Kumar Parisa,K. Bhagya Swetha Latha,M. Gnaneswara Reddy,

DOI NO:

https://doi.org/10.26782/jmcms.2025.07.00003

Keywords:

Brownian motion,Chemical reaction,Heat source,Hybrid Nanofluid,Inclined magnetic field,Thermophoresis,

Abstract

This study investigates the influence of thermophoresis, Brownian motion, and inclined magnetic fields on magnetohydrodynamic (MHD) mixed convective flow of a chemically reacting hybrid nanofluid over an inclined magnetic stretching sheet. The hybrid nanofluid comprises copper (Cu) and aluminum oxide (Al₂O₃) nanoparticles suspended in blood, serving as the base fluid. A heat source and first-order chemical reaction are incorporated into the model to analyze their combined impact on velocity, temperature, and concentration profiles. The governing system of highly nonlinear partial differential equations (PDEs) is transformed into a set of ordinary differential equations (ODEs) using similarity transformations. These equations are numerically solved using the fourth-order Runge-Kutta method coupled with the shooting technique, implemented in MATLAB. Graphical results illustrate the effects of key dimensionless parameters such as magnetic field strength, thermophoretic and Brownian motion parameters, chemical reaction rate, and heat source on flow characteristics. The numerical results show excellent agreement with previously published studies, validating the accuracy of the methodology. The findings have potential applications in biomedical engineering, targeted drug delivery, and thermal management systems.

Refference:

I. Algehyne, E. A., Alrihieli, H. F., Bilal, M., Saeed, A., & Weera, W. (2022). Numerical approach toward ternary hybrid nanofluid flow using variable diffusion and non-Fourier’s concept. ACS Omega, 7(30), 29380–29390. 10.1021/acsomega.2c04309
II. Buongiorno, J. (2006). Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240–250. 10.1115/1.2150834
III. Bhattad, A., Sarkar, J., & Ghosh, P. (2020). Heat transfer characteristics of plate heat exchanger using hybrid nanofluids: Effect of nanoparticle mixture ratio. Heat and Mass Transfer, 56(9), 2457–2472. 10.1007/s00231-020-02864-z
IV. Chamkha, A. J., Aly, A. M., & Al-Mudhaf, H. (2011). Mixed convection flow of a nanofluid over a permeable stretching sheet in the presence of a magnetic field. International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena, 2(1), 51–72.
V. Chandrakala, P., Srinivasa Rao, V. (2024). Effect of Heat and Mass Transfer over Mixed Convective Hybrid Nanofluids past an Exponentially Stretching Sheet, CFD Letters 16, Issue 3, 125-140.

VI. Eid, M. R., & Nafe, M. A. (2022). Thermal conductivity variation and heat generation effects on magneto-hybrid nanofluid flow in a porous medium with slip condition. Waves in Random and Complex Media, 32(6), 1103–1127. 10.1080/17455030.2022.2032491
VII. Elsebaee, F. A. A., Bilal, M., Mahmoud, S. R., Balubaid, M., Shuaib, M., Asamoah, J. K. K., & Ali, A. (2023). Motile micro-organism based trihybrid nanofluid flow with an application of magnetic effect across a slender stretching sheet: Numerical approach. AIP Advances, 13(3), 035237. 10.1063/5.0139487
VIII. Guedri, K., Khan, A., Gul, T., Mukhtar, S., Alghamdi, W., Yassen, M. F., & Tag Eldin, E. (2022). Thermally dissipative flow and entropy analysis for electromagnetic trihybrid nanofluid flow past a stretching surface. ACS Omega, 7(41), 33432–33442. 10.1021/acsomega.2c03834
IX. Hazarika, S., Ahmed, S., & Chamkha, A. J. (2021). Numerical simulation of MHD hybrid nanofluid flow over a stretching surface: Influence of nanoparticle type and volume fraction. Mathematics and Computers in Simulation, 182, 819–832. 10.1016/j.matcom.2020.10.026
X. Ibrahim, W., & Negera, M. (2020). MHD slip flow of upper-convected Maxwell nanofluid over a stretching sheet with chemical reaction. Journal of the Egyptian Mathematical Society, 28, 1–28.
XI. Irfan, M., Khan, M., & Khan, W. A. (2020). Heat sink/source and chemical reaction in stagnation point flow of Maxwell nanofluid. Applied Physics A, 126(1), 1–8.
XII. Khan, M., Malik, M. Y., Salahuddin, T., et al. (2019). Generalized diffusion effects on Maxwell nanofluid stagnation point flow over a stretchable sheet with slip conditions and chemical reaction. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(1), 1–9.
XIII. Khan, W. A., & Pop, I. (2010). Boundary-layer flow of a nanofluid past a stretching sheet. International Journal of Heat and Mass Transfer, 53(11–12), 2477–2483. 10.1016/j.ijheatmasstransfer.2010.01.032
XIV. Khan, A. S., Xu, H.-Y., & Khan, W. (2021). Magnetohydrodynamic Hybrid Nanofluid Flow Past an Exponentially Stretching Sheet with Slip Conditions. Mathematics, 9(24), 3291. 10.3390/math9243291
XV. Kuznetsov, A. V., & Nield, D. A. (2010). Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243–247. 10.1016/j.ijthermalsci.2009.07.015
XVI. Nield, D. A., & Kuznetsov, A. V. (2009). The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 52(25–26), 5792–5795. 10.1016/j.ijheatmasstransfer.2009.07.024
XVII. Noghrehabadi, A., Behseresht, A., Ghalambaz, M., & Behseresht, J. (2013). Heat and mass transfer of non-Darcy natural convection nanofluid flow over a vertical cone embedded in porous media. Journal of Thermophysics and Heat Transfer, 27(2), 334–342. 10.2514/1.T4086
XVIII. Patil, V.S., Patil A.B., Ganesh S, et al. (2021). Unsteady MHD flow of a nano Powell-Eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation. Materials Today: Proceedings, 44: 3767–3776.
XIX. Raizah, Z., Khan, A., Gul, T., Saeed, A., Bonyah, E., & Galal, A. M. (2023). Coupled Dufour and Soret effects on hybrid nanofluid flow through gyrating channel subject to chemically reactive Arrhenius activation energy. Journal of Nanomaterials, 2023, Article 6721294. 10.1155/2023/6721294
XX. Ramana, K. V., Reddy, G. R., Reddy, M. C., & Chamkha, A. J. (2021). Cattaneo–Christov model for MHD nanofluid flow past a stretching surface with thermal relaxation and viscous dissipation. Journal of Thermal Analysis and Calorimetry, 147, 2749–2761. 10.1007/s10973-020-09661-3
XXI. Rauf, A., Faisal, N. A., & Shah, T. B. (2022). Hall current and morphological effects on MHD micropolar non-Newtonian tri-hybrid nanofluid flow between two parallel surfaces. Scientific Reports, 12, 16608. 10.1038/s41598-022-20877-6
XXII. Reddy, P. S., Sreedevi, P., & Chamkha, A. J. (2017). Magnetohydrodynamic flow and heat transfer of nanofluids over a rotating disk embedded in porous media. Powder Technology, 307, 46–55. 10.1016/j.powtec.2016.11.013
XXIII. Sabu, A. S., Reddy, P. S., Sreedevi, P., & Chamkha, A. J. (2021). Effect of nanoparticle shape on MHD hybrid nanofluid flow in a rotating system with convective boundary conditions. International Communications in Heat and Mass Transfer, 129, 105711. 10.1016/j.icheatmasstransfer.2021.105711
XXIV. Seyedi, S. H., Saray, B. N., & Chamkha, A. J. (2020). Heat and mass transfer investigation of MHD Eyring–Powell flow in a stretching channel with chemical reactions. Physica A: Statistical Mechanics and its Applications, 544, 124109.
XXV. Shahzad, F., Jamshed, W., Eid, M. R., Ibrahim, R. W., Aslam, F., Isa, S. S. P. M., & Guedri, K. (2023). The effect of pressure gradient on MHD flow of a tri-hybrid Newtonian nanofluid in a circular channel. Journal of Magnetism and Magnetic Materials, 568, 170320. 10.1016/j.jmmm.2022.170320
XXVI. Sreedevi, P., Reddy, P. S., & Chamkha, A. J. (2018). Magnetohydrodynamic boundary-layer flow of nanofluids over a cone with free convection. International Journal of Mechanical Sciences, 135, 646. 10.1016/j.ijmecsci.2017.12.019
XXVII. Zhang, I., L., Bhatti, M. M., Michaelides, E. E., Marin, M., & Ellahi, R. (2022). Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. European Physical Journal Special Topics, 231(1), 1–13. 10.1140/epjs/s11734-021-00293-7

View Download