Authors:
Aghssan Mohammed Nwehil,Husam Noman Mohammed Ali,DOI NO:
https://doi.org/10.26782/jmcms.2025.11.00003Keywords:
Plasmonics,Fiber Connectors,Nanoantennas,Optical Computing,Optical Detectors,Routers,Telecommunications,Filters,Abstract
When properly excited at visible or near-infrared wavelengths, plasmonic materials display distinct with interesting appearances which could be overworked in the design and tuning of optical emission with diffusion settings at nanoscale scales. Researchers have presented a diversity of plasmonic heterostructures through scientific studies and used them to filter, transmit, detect, and detect light waves. And the amendment. In this study, implementations of modern plasmonic schemes utilized in communications are summarized. Their distinct roles have been discussed in multiple paths, including beam focusing, directing, filtering, modulation, switching, as well as reception, all of which are of paramount interest to the improvements of sixth-generation (6G) cellular networks. An optical communications system has been simulated that simulates the implementation and use of plasmonic materials to filter optical waveforms and direct the communications beam in an efficient and focused manner while reducing the data reception error rate to an excellent rate to avoid noise waves and interference for the sixth generation.Refference:
I. Atabaki, A. H., Moazeni, S., Pavanello, F., Gevorgyan, H., Notaros, J., Alloatti, L., Wade, M. T., Sun, C., Kruger, S. A., Meng, H., et al. (2018). Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 556, 349–354.
II. Basak, C., Hosain, M. K., & Sazzad, A. A. (2020). Design and simulation of a high sensitive surface plasmon resonance biosensor for detection of biomolecules. Sensors & Imaging, 21, Article 1–19.
III. Burla, M., Bonjour, R., Salamin, Y., Abrecht, F., Hoessbacher, C., Haffner, C., Heni, W., Fedoryshyn, Y., Baeuerle, B., Josten, A., et al. (2018). Plasmonics for next-generation wireless systems. In Proceedings of the 2018 IEEE/MTT S International Microwave Symposium—IMS (Vol. 9, pp. 1308–1311). Philadelphia, PA, USA: IEEE.
IV. Burla, M., Salamin, Y., Bonjour, R., Abrecht, F., Hoessbacher, C., Haffner, C., Heni, W., Fedoryshyn, Y., Werner, D., Baeuerle, B., et al. (2019). Integrated photonic and plasmonic technologies for microwave signal processing enabling mm wave and sub THz wireless communication systems. In Broadband Access Communication Technologies XIII (Vol. 1094505). San Francisco, CA, USA: SPIE.
V. Chen, C., Mohr, D. A., Choi, H. K., Yoo, D., Li, M., & Oh, S. H. (2018). Waveguide integrated compact plasmonic resonators for on chip mid infrared laser spectroscopy. Nano Letters, 18, 7601–7608.
VI. Cohen, M., Abulafia, Y., Lev, D., Lewis, A., Shavit, R., & Zalevsky, Z. (2017). Wireless communication with nanoplasmonic data carriers: Macroscale propagation of nanophotonic plasmon polaritons probed by near field nanoimaging. Nano Letters, 17, 5181–5186.
VII. Chiu, N.F.; Lin, T.L.; Kuo, C.T. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sens. Actuators B Chem. 2018, 265, 264–272.
VIII. Diaz Valencia, B. F., Mejía Salazar, J. R., Oliveira, O. N., Jr., Porras Montenegro, N., & Albella, P. (2017). Enhanced transverse magneto optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio)sensing platforms. ACS Omega, 2, 7682–7685.
IX. Elder, D., Johnson, L., Tillack, A., Robinson, B. H., Haffner, C., Heni, W., Hoessbacher, C., Fedoryshyn, Y., Salamin, Y., Baeuerle, B., et al. (2018). Multi scale theory assisted nano engineering of plasmonic organic hybrid electro optic device performance. In Organic Photonic Materials and Devices XX (Vol. 10529). San Francisco, CA, USA: SPIE.
X. Ghideli, M., Mascaretti, B., Bricchi, B. R., Zapelli, A., Russo, V., Casari, C. S., & Bassi, A. L. (2018). Engineering plasmonic nanostructured coverings by pulsed laser deposition. Applied Surface Science, 434, 1064–1073.
XI. Huang, Q.; Wang, Y.; Zhu, W.; Lai, T.; Peng, J.; Lyu, D.; Guo, D.; Yuan, Y.; Lewis, E.; Yang, M. Graphene-Gold-Au@Ag NPs-PDMS Films Coated Fiber Optic for Refractive Index and Temperature Sensing. IEEE Photonics Technol. Lett. 2019, 31, 1205–1208.
XII. Hoessbacher, C., Josten, A., Baeuerle, B., Fedoryshyn, Y., Hettrich, H., Salamin, Y., Heni, W., Haffner, C., Kaiser, C., Schmid, R., et al. (2017). Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Optics Express, 25, 1762–1768.
XIII. Kamran, M., & Faryad, M. (2018). Plasmonic sensor using a combination of grating and prism couplings. Plasmonics, 14, 791–798.
XIV. Li, H., Chen, B., Qin, M., & Wang, L. (2020). Strong plasmon exciton coupling in MIM waveguide resonator systems with WS2 monolayer. Optics Express, 28, 205–215.
XV. Li, T., Zhu, L., Yang, X., Lou, X., & Yu, L. (2020). A refractive index sensor based on H shaped photonic crystal fibers coated with Ag graphene layers. Sensors, 20, 741. 10.3390/s20030741
XVI. Mejía Salazar, J. R., Camacho, S. A., Constantino, C. J. L., & Oliveira, O. N., Jr. (2018). New trends in plasmonic (bio)sensing. Anais da Academia Brasileira de Ciências, 90, 779–801.
XVII. Mejía Salazar, J. R., & Oliveira, O. N., Jr. (2018). Plasmonics biosensing. Chemical Reviews, 118, 10617–10625.
XVIII. Muench, J. E., Ruocco, A., Giambra, M. A., Miseikis, V., Zhang, D., Wang, J., Watson, H. F. Y., Park, G. C., Akhavan, S., Midrio, M., et al. (2019). Waveguide integrated, plasmonic enhanced graphene photodetectors. Nano Letters, 19, 7632–7644.
XIX. Pitelet, A., Mallet, E., Ajib, R., Lemaître, C., Centeno, E., & Moreau, A. (2018). Plasmonic enhancement of spatial dispersion effects in prism coupler experiments. Physical Review B, 98, 125418.
XX. Sadeghi, Z., & Shirkani, H. (2020). Highly sensitive mid infrared SPR biosensor for a wide range of biomolecules and biological cells based on graphene gold grating. Physica E: Low Dimensional Systems and Nanostructures, 119, 114005.
XXI. Salaliya, P. B., Gupta, N., & Dhawan, A. (2019). Steerable plasmonic nanoantennas: Active steering of radiation patterns using phase change materials. Optics Express, 27, 31567–31586.
XXII. Savaliya, P. B., Gupta, N., & Dhawan, A. (2019). Steerable plasmonic nanoantennas: Active steering of radiation patterns using phase change materials. Optics Express, 27, 31567–31586. [Note: duplicate entry consolidated if desired]
XXIII. SBrT Zúñiga, D. J. C., Mafra, S. B., Mejía Salazar, J. R., Montejo Sánchez, S., Fernandez, E. M. G., & Céspedes, S. (2019). Visible light V2V cooperative communication under environmental interference. SBrT. 10.14209/SBRT.2019.1570558276
XXIV. Thraskias, C. A., Lallas, E. N., Neumann, N., Schares, L., Offrein, B. J., Henker, R., Plettemeier, D., Ellinger, F., Leuthold, J., & Tomkos, I. (2018). Survey of photonic and plasmonic interconnect technologies for intra datacenter and high performance computing communications. IEEE Communications Surveys & Tutorials, 20, 2758–2783.
XXV. Ummethala, S., Harter, T., Koehnle, K., Muehlbrandt, S., Kutuvantavida, Y., Kemal, J., Marin Palomo, P., Schaefer, J., Tessmann, A., Garlapati, S. K., et al. (2019). THz to optical conversion in wireless communications using an ultra broadband plasmonic modulator. Nature Photonics, 13, 519–524.
XXVI. Wei, H., Pan, D., Zhang, S., Li, Z., Li, Q., Liu, N., & Xu, H. (2018). Plasmon waveguiding in nanowires. Chemical Reviews, 118, 2882–2926.
XXVII. Yoo, K., Becker, S. F., Silies, M., Yu, S., Lienau, C., & Park, N. (2019). Steering second harmonic radiation through local excitations of plasmon. Optics Express, 27, 18246–18261.
XXVIII. Yaqeen S.Mezaal, Halil T. Eyyuboğlu, and Jawad K. Ali. “New microstrip bandpass filter designs based on stepped impedance Hilbert fractal resonators.” IETE Journal of Research 60.3 (2014): 257-264..
XXIX. Y. S. Mezaal, L. N. Yousif, Z. J. Abdulkareem, H. A. Hussein, and S. K. Khaleel, “Review about effects of IoT and nanotechnology techniques in the development of IoNT in wireless systems,” International Journal of Engineering and Technology, vol. 7, no. 4, pp. 3602–3606, 2018. 10.14419/ijet.v7i4.19615..
XXX. Yahya, A., J. A. Aldhaibaini, R. B. Ahmad, Z. G. Ali, and R. A. Fayadh, “Enhancing link quality in a multi-hop relay in LTE-A employing directional antenna,” in 2013 IEEE International RF and Microwave Conference (RFM), 2013. 10.1109/RFM.2013.6757227
XXXI. Yahya, A., J. A. Aldhaibaini, R. B. Ahmad, M. Zain, and A. S. Salman, “PERFORMANCE ANALYSIS OF TWO-WAY MULTI-USER WITH BALANCE TRANSMITTED POWER OF RELAY IN LTE-A CELLULAR NETWORKS,” Journal of Theoretical & Applied Information Technology, vol. 51, no. 2, 2013.
XXXII. Zainab Falih Hamza, et. al. “Estimating systems reliability functions for the generalized exponential distribution with application”, Period. Eng. Nat. Sci., vol. 11, no. 3, pp. 108–114, May 2023, 10.21533/pen.v11.i3.138
XXXIII. Zhang, Muench? (entry merged) Muench, J. E., Ruocco, A., Giambra, M. A., Miseikis, V., Zhang, D., Wang, J., Watson, H. F. Y., Park, G. C., Akhavan, S., Midrio, M., et al. (2019). Waveguide integrated, plasmonic enhanced graphene photodetectors. Nano Letters, 19, 7632–7644.
XXXIV. Zia, R., Schuller, J. A., Chandran, A., & Brongersma, M. L. (2006). Plasmonics: The next chip scale technology. Materials Today, 9, 20–27.
XXXV. Zhu, J., Xu, Z., Xu, W., Fu, D., & Wei, D. (2018). Surface plasmon polariton waveguide by bottom and top of graphene. Plasmonics, 13, 1513–1522.
XXXVI. Zhu, J., & Xu, Z. (2019). Tunable temperature sensor based on an integrated plasmonic grating. Optical Materials Express, 9, 435–440.
XXXVII. Zhou, X.; Li, X.; Cheng, T.L.; Li, S.; An, G. Graphene enhanced optical fiber SPR sensor for liquid concentration measurement. Opt. Fiber Technol. 2018, 43, 62–66
XXXVIII. Zhuang, T., Li, S., Song, G., Jiang, P., & Yu, L. (2019). Tunable band stop plasmonic waveguide filter with single sided multiple teeth shaped structure. Physica Scripta, 94, 095602.

