NUMERICAL INVESTIGATION OF MWCNT/ZNO HYBRID NANOFLUID HEAT PERFORMANCE OF A COUNTER FLOW HEAT EXCHANGER
Authors:
Pidaparthy Maheshbabu, R. Ramkumar, Goda Sreenivasulu Reddy, M. Bakkiyaraj, Prakash H. , JadhavDOI NO:
https://doi.org/10.26782/jmcms.2025.07.00008Abstract:
The numerical study explores the augmentation of heat dissipation rate and efficiency of a counter flow heat exchanger (CFHEx) in the presence of (MWCNT/ZnO) hybrid nanofluids (HNF). The HNF concentration is varied from 0.01% to 0.05% in steps of 0.02%. The Reynolds number (Re) of cold fluid is varied from 2436 to 11626, while that of hot fluid, Re, is kept constant. The typical k-ɛ model is utilized for the numerical simulation in turbulent flow regimes. The current numerical results are compared to the literature to serve as validation purpose. From the validation study, the Nusselt (Nu) number agrees well with the numerical and experimental data of the literature, with a deviation of less than 6%. From the numerical study, it can be observed that when the concentrations of HNF the Nu number intensifies meaningfully with a rise in the Re number. For HNF concentration of 0.05%, the average increase in Nusselt number (Nu) is found to be around 41.35% and 23.13% higher than that of base fluid water and 0.01% concentration of HNF, respectively, with an adequate rise in the pressure drop. The critical performance evaluation criteria are also determined, and it is found that at higher concentrations, of hybrid nanofluid performs better than at lower concentrations of the hybrid nanofluid. In addition, the PEC is found to be maximum at lower Re numbers, and further, it reduces with an increase in the flow Re number.Keywords:
Friction factor,Heat Exchanger,Hybrid nanofluid,Nusselt number,Performance evaluation criteria,Refference:
I. A. Beheshti, M. K .Moraveji, M. Hejazian. : ‘Comparative numerical study of nanofluid heat transfer through an annular channel’. Numerical Heat Transfer, Part A: Applications. Vol. 67, pp. 100-117, 2015. 10.1080/10407782.2014.894359.
II. A. Bhattad. : ‘Experimental investigation of Al2O3-MgO hot hybrid nanofluid in a plate heat exchanger’. Heat Transfer. Vol. 49, pp. 1-11, 2020. 10.1002/htj.21724
III. A. Kumar, S. Sharma, S. Kumar, R. Maithani. : ‘Thermohydraulic analysis of twisted tape inserts with SiO2/H2O nanofluid in heat exchanger’. Australian Journal of Mechanical Engineering. Vol. 00, pp. 1-14, 2021. 10.1080/14484846.2021.1960672.
IV. A. Mund, B. Pattanayak, J. S. Jayakumar, K. Parashar, S. K. S. Parashar. : ‘Experimental and Numerical Study of Heat Transfer in Double-Pipe Heat Water Nanofluid’. Advances in Fluid and Thermal Engineering. Vol. 1, pp. 531-540, 2019. 10.1007/978-981-13-6416-7.
V. A. P. Sudheer, U. Madanan. : ‘Numerical investigation into heat transfer augmentation in a square minichannel heat sink using butterfly inserts’. Thermal Science and Engineering Progress. Vol. 36, pp. 101522, 2022. 10.1016/j.tsep.2022.101522.
VI. G. Huminic, A. Huminic. : ‘Application of nanofluids in heat exchangers: A review’. Renewable and Sustainable Energy Reviews. Vol. 16, pp. 5625-5638, 2012. 10.1016/j.rser.2012.05.023.
VII. G. Narendran, P. H. Jadhav, N. Gnanasekaran. : ‘A smart and sustainable energy approach by performing multi-objective optimization in a minichannel heat sink for waste heat recovery applications’. Sustainable Energy Technologies and Assessments. Vol. 60, pp. 103447, 2023. 10.1016/j.seta.2023.103447.
VIII. G. Narendran, P. H. Jadhav, N. Gnanasekaran. : ‘Numerical analysis of thermo hydro-dynamics behavior of solar flat plate collector with square and V-cut twisted tape inserts’. Numerical Heat Transfer, Part A: Applications. Vol. 84, pp. 1-25, 2023. 10.1080/10407782.2023.2294043.
IX. G. S. Reddy, R. Kalaivanan, R. U. Kumar, P. H. Jadhav. : ‘Influence of W-cut twisted tape inserts on heat transfer characteristics of a counter flow heat exchanger using CeO2 nanofluid – an experimental and numerical investigations’. Numerical Heat Transfer, Part A: Applications. Vol. 85, pp. 1-21, 2024. 10.1080/10407782.2024.2359060.
X. H. Maddah, M. Alizadeh, N. Ghasemi, S. R. Wan Alwi. : ‘Experimental study of Al2O3/water nanofluid turbulent heat transfer enhancement in the horizontal double pipes fitted with modified twisted tapes’. International Journal of Heat and Mass Transfer. Vol. 78, pp. 1042-1054, 2014. 10.1016/j.ijheatmasstransfer.2014.07.059.
XI. K. Aroonrat, C. Jumpholkul, R. Leelaprachakul, A. S. Dalkilic, O. Mahian, S. Wongwises. : ‘Heat transfer and single-phase flow in internally grooved tubes’. International Communications in Heat and Mass Transfer. Vol. 42, pp. 62-68, 2013. 10.1016/j.icheatmasstransfer.2012.12.001.
XII. M. E. Nakhchi, J. A. Esfahani. : ‘Numerical investigation of rectangular-cut twisted tape insert on performance improvement of heat exchangers’. International Journal of Thermal Sciences. Vol. 138, pp. 75-83, 2019. 10.1016/j.ijthermalsci.2018.12.039.
XIII. M. E. Nakhchi, J. A. Esfahani. : ‘Performance intensification of turbulent flow through heat exchanger tube using double V-cut twisted tape inserts’. Chemical Engineering & Processing: Process Intensification. Vol. 141, pp. 107533, 2019. 10.1016/j.cep.2019.107533.
XIV. M. Hemmat Esfe, H. Hajmohammad, D. Toghraie, H. Rostamian, O. Mahian, S. Wongwises. : ‘Multi-objective optimization of nanofluid flow in double tube heat exchangers for applications in energy systems’. Energy. Vol. 137, pp. 160-171, 2017. 10.1016/j.energy.2017.06.104.
XV. M. Khoshvaght-aliabadi, A. Feizabadi. : ‘Compound heat transfer enhancement of helical channel with corrugated wall structure’. International Journal of Heat and Mass Transfer. Vol. 146, pp. 118858, 2020. 10.1016/j.ijheatmasstransfer.2019.118858.
XVI. M. M.Elias, I. M. Shahrul, I. M. Mahbubul, R. Saidur, N. A. Rahim. : ‘Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid’. International Journal of Heat and Mass Transfer. Vol. 70, pp. 289-297, 2014. 10.1016/j.ijheatmasstransfer.2013.11.018.
XVII. M. M. Rahman, S. Saha, S. Mojumder, A. G. Naim, R. Saidur, T. A. Ibrahim. : ‘Effect of Sine-Squared Thermal Boundary Condition on Augmentation of Heat Transfer in a Triangular Solar Collector Filled with Different Nanofluids’. Numerical Heat Transfer, Part B: Fundamentals. Vol. 68, pp. 37-41, 2015. 10.1080/10407790.2014.992058.
XVIII. N. F. A. Hamza, S. Aljabair. : ‘Evaluation of thermal performance factor by hybrid nanofluid and twisted tape inserts in heat exchanger’. Heliyon. Vol. 8, pp. e11950, 2022. 10.1016/j.heliyon.2022.e11950.
XIX. N. T. R. Kumar, P. Bhramara, A. Kirubeil, L. S. Sundar, M. K. Singh, A. C. M. Sousa. : ‘Effect of twisted tape inserts on heat transfer, friction factor of Fe3O4 nanofluids flow in a double pipe U-bend heat exchanger’. International Communications in Heat and Mass Transfer. Vol. 93, pp. 53-62, 2018. 10.1016/j.icheatmasstransfer.2018.03.020.
XX. P. H. Jadhav, N. Gnanasekaran. : ‘Optimum design of heat exchanging device for efficient heat absorption using high porosity metal foams’. International Communications in Heat and Mass Transfer. Vol. 126, pp. 105475, 2021. 10.1016/j.icheatmasstransfer.2021.105475.
XXI. P. H. Jadhav, N. Gnanasekaran, D. A. Perumal, M. Mobedi. : ‘Performance evaluation of partially filled high porosity metal foam configurations in a pipe’. Applied Thermal Engineering. Vol. 194, pp. 117081, 2021. 10.1016/j.applthermaleng.2021.117081.
XXII. P. H. Jadhav, N. Gnanasekaran, M. Mobedi. : ‘Analysis of functionally graded metal foams for the accomplishment of heat transfer enhancement under partially filled condition in a heat exchanger’. Energy. Vol. 263, pp. 125691, 2023. 10.1016/j.energy.2022.125691.
XXIII. P. H. Jadhav, G. Nagarajan, D. A. Perumal. : ‘Conjugate heat transfer study comprising the effect of thermal conductivity and irreversibility in a pipe filled with metallic foams’. Heat and Mass Transfer. Vol. 57, pp. 911-930, 2020. 10.1007/s00231-020-03000-x.
XXIV. P. H .Jadhav, N. Gnanasekaran, D. A. Perumal. : ‘Numerical consideration of LTNE and Darcy extended Forchheimer models for the analysis of forced convection in a horizontal pipe in the presence of metal foam’. Journal of Heat Transfer. Vol. 143, pp. 1-16, 2021. 10.1115/1.4048622.
XXV. P. H. Jadhav, T. G, N. Gnanasekaran, M. Mobedi. :’ Performance score based mulri-objective optimization for thermal dasign of partially filled high porosity metal foam pipes under forced convection’. International Journal of Heat and Mass Transfer. Vol. 182, pp. 121911, 2022. 10.1016/j.ijheatmasstransfer.2021.121911.
XXVI. P. H. Jadhav, N. Gnanasekaran, D. A. Perumal. : ‘Thermodynamic analysis of entropy generation in a horizontal pipe filled with high porosity metal foams’. Materials Today: Proceedings. Vol. 51, pp. 1598 – 1603, 2022. 10.1016/j.matpr.2021.10.451.
XXVII. P. H. Jadhav, B. Kotresha, N. Gnanasekaran, D. Arumuga Perumal. : ‘Forced Convection Analysis in a Horizontal Pipe in the Presence of Aluminium Metal Foam-A Numerical Study’. Springer Singapore. pp. 1-15, 2021. 10.1007/978-981-16-0698-4_53.
XXVIII. P. M. Joseph, S. T. V.Arjunan, M. M. M. N. Sadanandam. : ‘Experimental and theoretical investigation on the effects of lower concentration CeO2/water nanofluid in flat-plate solar collector’. Journal of Thermal Analysis and Calorimetry. Vol. 131, pp. 1-15, 2017. 10.1007/s10973-017-6865-4.
XXIX. P. V. D. Prasad, A. V. S. S. K. S. Gupta, K. Deepak. : ‘Investigation of Trapezoidal-Cut Twisted Tape Insert in a Double Pipe U-Tube Heat Exchanger using Al2O3 / Water Nanofluid’. Procedia Materials Science. Vol. 10, pp. 50-63, 2015. 10.1016/j.mspro.2015.06.025.
XXX. R. Aghayari, H. Maddah, S. M. Pourkiaei, M. H. Ahmadi, L. Chen, M. Ghazvini. : ‘Theoretical and experimental studies of heat transfer in a double-pipe heat exchanger equipped with twisted tape and nanofluid’. The European Physical Journal Plus. Vol. 135, pp. 123, 2020. 10.1140/epjp/s13360-020-00252-8.
XXXI. R. Dakota, P. Gregory, K. H. Stefania, I. M. Ziad. : ‘Experimental and numerical investigation of heat enhancement using a hybrid nanofluid of copper oxide / alumina nanoparticles in water’. Journal of Thermal Analysis and Calorimetry. Vol. 143, pp. 1-15, 2020. 10.1007/s10973-020-09639-2.
XXXII. R. Khargotra, R. Kumar, R. Nadda, S. Dhingra, T. Alam. : ‘A review of different twisted tape configurations used in heat exchanger and their impact on thermal performance of the system’. Heliyon. Vol. 9, pp. e16390, 2023. 10.1016/j.heliyon.2023.e16390.
XXXIII. S. Kr, S. Jahar. : ‘Improving hydrothermal performance of double-tube heat exchanger with modified twisted tape inserts using hybrid nanofluid’. Journal of Thermal Analysis and Calorimetry. Vol. 143, pp. 1-15, 2020. 10.1007/s10973-020-09380-w.
XXXIV. S. R. Goda, R. Kalaivanan, R. U. Kumar, P. H. Jadhav. : ‘Experimental and numerical investigation of thermo-hydrodynamic performance of twin tube counter flow heat exchanger using cerium oxide nanofluid’. Numerical Heat Transfer, Part A: Applications. Vol. 84, pp. 1-19, 2023. 10.1080/10407782.2023.2268831.
XXXV. T. S. Athith, G. Trilok, P. H. Jadhav, N. Gnanasekarn. : ‘Heat transfer optimization using genetic algorithm and artificial neural network in a heat exchanger with partially filled different high porosity metal foam. Material Toady: Proceedings. Vol. 51, pp. 1642-1648, 2022. 10.1016/j.matpr.2021.11.248.
XXXVI. W. Ahmed, S. N. K. Z. Z. Chowdhury, M. R. B. J. Naveed, A. M. A. Mujtaba. : ‘Experimental investigation of convective heat transfer growth on ZnO@TiO2/DW binary composites / hybrid nanofluids in a circular heat exchanger’. Journal of Thermal Analysis and Calorimetry. Vol. 143, pp. 1-15, 2020. 10.1007/s10973-020-09363-x.
XXXVII. W. Li, Z. Yu, Y. Wang, Y. Li. : ‘Heat transfer enhancement of twisted tape inserts in supercritical carbon dioxide flow conditions based on CFD and vortex kinematics’. Thermal Science and Engineering Progress. Vol. 31, pp. 101285, 2022. 10.1016/j.tsep.2022.101285.