ON THE ENCAPSULATION OF THE NEW XLINDLEY DISTRIBUTION

Authors:

B. Barrouk,H. Zeghdoudi,

DOI NO:

https://doi.org/10.26782/jmcms.2025.09.00001

Keywords:

Circular statistics,Compressive Strength,GGBS,Metakaoline,New Xlindley,Regression Analysis,Split Tensile Strength,Wrapping,Trigonometric moments.,

Abstract

In this study, we introduce the Wrapping New XLindley Distribution (WNXLD) as an extension of the Wrapping Distribution (WD). We derive the probability density function, cumulative distribution function, characteristic function, trigonometric moments, and other relevant parameters for WNXLD Additionally, parameter estimation is performed using the maximum likelihood estimation method.

Refference:

I. A. Z.Afify, R.A.Mohamed: ‘Wrapped Lindley distribution: Properties and applications’. Journal of Computational and Applied Mathematics, 2018, 343, 251–266. 10.1016/j.cam.2018.05.007
II. A.V.D.Rao, I.R. Sarma,S.V.S. Girija: ‘On wrapped version of some life testing models’. Commun. Stat.-Theory Methods 2007, 36, 2027–2035.
III. A.V.D.Rao, S.V.S. Girija, V.J. Devaraaj: ‘On characteristics of wrapped gamma distribution’. IRACST Eng. Sci. Technol. Int. J. (ESTIJ) 2013, 3, 228–232.
IV. D.Lindley: ‘Fiducial distributions and Bayes’ theorem’. J. R. Stat. Soc, 1958, 20, 102–107. [CrossRef]
V. D.Lindley: ‘Introduction to Probability and Statistics from a Bayesian Viewpoint’. Cambridge University Press: New York, NY, USA, 1981.
VI. K.V. Mardia: ‘Statistics of Directional Data’. J. R. Stat. Soc. 1975, 37, 349–393. [CrossRef]
VII. K.V.Mardia, P.E. Jupp: ‘Directional Statistics, 2nd ed’. Wiley: New York, NY, USA, 2000.
VIII. M.A.S. Adnan, S. Roy: ‘Wrapped variance gamma distribution with an application to wind direction’. Environ. Stat, 2014, 6, 1–10.
IX. M.E.Ghitany, B.Atieh, S.Nadarajah: ‘Lindley distribution and its application’. Math. Comput. Simul, 2008, 87, 493–506. [CrossRef]
X. N. Khodja et al.: ‘Modeling Voltage Real Data Set by a New Version of Lindley Distribution’, in IEEE Access, vol. 11, pp. 67220-67229, 2023. 10.1109/ACCESS.2023.3287926
XI. P.L.Lévy : ‘Addition des variables aléatoires définies sur une circonférence’. Bull. Soc. Math. Franc. 1939, 67, 1–41.
XII. P.Turchin : ‘Quantitative analysis of movement: measuring and modeling population redistribution in animals and plants’.1998.
XIII. S. M.Ali, J.Woo: ‘Wrapped Weibull distribution and its applications’. Journal of Statistical Theory and Applications, 2014 13(3), 253–265. 10.2991/ jsta.2014.13.3.5
XIV. S. R.Jammalamadaka, T. J. Kozubowski: ‘New families of wrapped distributions for modeling skew circular data’. Communications in Statistics – Theory and Methods, 2004, 33(9), 2059–2074. 10.1081/STA-200026951
XV. S.J.Rao, A.SenGupta: ’Topics in Circular Statistics; Series On Multivariate Analysis’. World Scientific: New York, NY, USA, 2001, Volume 5. [CrossRef].
XVI. S.J.Rao, T.J. Kozubowski: ‘New families of wrapped distributions for modeling skew circular data’. Commun. Stat.-Theory Methods, 2004, 33, 2059–2074.
XVII. S.Joshi, K.K. Jose, D.Bhati: ‘Estimation of a change point in the hazard rate of Lindley model under right censoring’. Commun. Stat. Simul. Comput, 2017, 46, 3563–3574. [CrossRef].
XVIII. S.Joshi, K.K. Jose: ‘Wrapped Lindley distribution’. Commun. Stat. Theory Methods , 2018, 47, 1031–1021. [CrossRef].
XIX. S.R. Jammalamadaka, A.Sengupta : ‘Topics in Circular Statistics’. World Scientific Publishing, 2001.
XX. S.Roy, M.A.S. Adnan: ‘Wrapped weighted exponential distributions’. Stat. Probab. Lett, 2012, 82, 77–83. [CrossRef].

View Download