Authors:
M. R. Alfian,A. E. S. H. Maharani,S. T. Lestari,S. H. P. Ningrum,M. U. Romdhini,DOI NO:
https://doi.org/10.26782/jmcms.2025.10.00001Keywords:
Max-Plus Algebra,Mataram City,Urban Traffic,Sustainable Cities,Abstract
This study applies a Max-Plus algebra-based model to optimize traffic signal timing and enhance intersection efficiency in urban settings, with a case study conducted at the Pejanggik–Bung Hatta intersection in Mataram, Indonesia. Primary data, including signal durations and traffic density, were gathered through direct field observations. A directed graph was developed to represent traffic movements and potential conflicts, after which the Welch-Powell algorithm and Max-Plus algebra were applied to design a synchronized and periodic signal schedule. The optimized system successfully reduced the total traffic light cycle time from 525 to 375 seconds, maintaining an equitable distribution of green times and achieving a 28.57% improvement in efficiency. An eigenvalue of 75 seconds was obtained, indicating a stable and recurring timing cycle. These results demonstrate the practical utility of the Max-Plus approach in managing urban traffic, offering a cost-effective and mathematically robust strategy to alleviate congestion and promote sustainable transportation planning. The methodology is adaptable to other intersections experiencing similar traffic issues and provides valuable guidance for policymakers and urban traffic engineers in developing responsive and inclusive traffic control solutions.Refference:
I. A. A. Aminu, S. E. Olowo, I. M. Sulaiman, N. Abu Bakar, M. Mamat: ‘On application of max-plus algebra to synchronized discrete event system’. Math. Stat., 2021, 9(2), 81-92. 10.13189/ms.2021.090201
II. A. E. S. H. Maharani, A. Suparwanto: ‘Application of system max-plus linear equations on serial manufacturing machine with storage unit’. BAREKENG: J. Math. Appl. Sci., 2022, 16(2), 525-530. 10.30598/barekengvol16iss2pp525-530.
III. B. Heidergott, G. J. Olsder, J. van der Woude: ‘Max Plus at Work Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications’. De Gruyter Brill, 2006.
IV. D. Dubey, S. K. Neogy, S. Sinha: ‘Max plus algebra, optimization and game theory’. Mathematical Analysis and Applications in Modeling, 2020, 302, 345-361.
V. D. Li, J. Wu, M. Xu, Z. Wang, K. Hu: ‘Adaptive Traffic Signal Control Model on Intersections Based on Deep Reinforcement Learning’. J. Adv. Trans., 2020, 6505893, 1-14. 10.1155/2020/650589
VI. E. Carnia, R. Wilopo, R. Napitupulu, N. Anggriani, A. K. Supriatna: ‘Modified Kleene star algorithm using max-plus algebra and its application in the railroad scheduling graphical user interface’. MDPI: Computation, 2023, 11(1), 11. 10.3390/computation11010011
VII. E. Joelianto, H. Y. Sutarto, D. G. Airulla, M. Zaky: ‘Design and simulation of traffic light control system at two intersections using max-plus model predictive control’. Int. J. Artif. Intell., 2020, 18(1), 97-116.
VIII. F. Baccelli, G. Cohen, G. J. Olsder, J-P. Quadrat: ‘Synchronization and Linearity: An Algebra for Discrete Event Systems’. Wiley, New York, 1992.
IX. F. S. Schanzenbächer: ‘Max-plus modeling of traffic on passenger railway lines with a junction: fundamental diagram and dynamic control’. PhD Thesis (2020). 10.48550/arXiv.2010.12992.
X. G. P. T. Hanefa, Siswanto: ‘Petri net model and max-plus algebra in outpatient care at Solo Peduli Clinic, Surakarta’. J. Phys.: Conf. Ser., 2021, 1776, 012047. 10.1088/1742-6596/1776/1/012047.
XI. H. Zaher, H. A. Khalifa, A. Ahmed: ‘Fuzzy max plus algebra algorithm for traffic problems’. Int. J. Emerg. Technol. Eng. Res., 2019, 7(11), 530-535. 0.30534/ijeter/2019/217112019
XII. I. O. Olayode, L. K. Tartibu, M. O. Okwu, U. F. Uchechi: ‘Intelligent transportation systems, un-signalized road intersections and traffic congestion in Johannesburg: a systematic review’. Procedia CIRP, 2020, 91, 844-850. 10.1016/j.procir.2020.04.137.
XIII. J. Komenda, S. Lahaye, J-L. Boimond, T. van den Boom: ‘Max-plus algebra in the history of discrete event systems’. Annu. Rev. Control., 2018, 45, 240-249. 10.1016/j.arcontrol.2018.04.004.
XIV. J.-P. Quadrat: ‘Max-plus algebra and applications to system theory and optimal control’. Proc. Int. Congress Math., 1995, 1511–1522. 10.1007/978-3-0348-9078-6_148.
XV. K. Fahim, K. Subiono, J. van der Woude: ‘On a generalization of power algorithms over max-plus algebra’. Discrete Event Dynamic Systems, 2017, 27, 181-203. 10.1007/s10626-016-0235-4.
XVI. M. I. D. Firmansyah, M. S. Mufid, Subiono, B. Davvaz: ‘Disordered discrete-time quantum walk over max-plus algebra’. Discrete Event Dynamic Systems, 2025, 35, 1–21. 0.1007/s10626-025-00409-6
XVII. M. U. Romdhini, A. Nawawi, F. Al-Sharqi, A. Al-Quran, S. R. Kamali: ‘Wiener-Hosoya energy of non-commuting graph for dihedral groups’. Asia Pac. J. Math., 2024, 11(9), 1-9. 10.28924/APJM/11-9.
XVIII. M. U. Romdhini, A. Nawawi, B. N. Syechah: ‘Seidel Laplacian and Seidel signless Laplacian energies of commuting graph for dihedral groups’. Mal. J. Fund. Appl. Sci., 2024, 20(3), 701–713. 10.26554/sti.2025.10.3.
XIX. P. Butkovic: ‘Max-linear Systems: Theory and Algorithms’. Springer, 2010.
XX. R. U. Hurit, A. Rudhito: ‘Max-plus algebraic modeling of three crossroad traffic queue systems with one underpass’. J. Phys.: Conf. Ser., 2019, 1307, 012013. 10.1088/1742-6596/1307/1/012013.
XXI. S. Watanabe, A. Fukuda, E. Segawa, I. Sato: ‘A walk on max-plus algebra’. Linear Algebra Appl., 2020, 598, 29–48. 10.1016/j.laa.2020.03.025
XXII. T. J. J. van den Boom, B. De Schutter: ‘Analytic expressions in stochastic max-plus-linear algebra and their application in model predictive control’. IEEE Trans. Automat. Control, 2021, 66(4), 1872-1878. 10.1109/TAC.2020.2997851.
XXIII. T. Sulistyaningsih, Siswanto, Pangadi: ‘Petri net model and max-plus algebra on queue in clinic UNS Medical Center’. J. Phys.: Conf. Ser., 2020, 1494, 012004. 10.1088/1742-6596/1494/1/012004.
XXIV. Z. Liu: ‘A novel model for train operation adjustment in high-speed railway based on max-plus algebra’. Int. J. Circuits Syst. Signal Process., 2020, 14, 881-887. 10.46300/9106.2020.14.114.
XXV. Z. Sya’diyah: ‘Max plus algebra of timed petri net for modeling single server queuing systems’. BAREKENG: J. Math. Appl. Sci., 2023, 17(1), 0155-0164.