ARCHITECTING SECURE E-COMMERCE SYSTEMS: A TECHNICAL DEEP DIVE INTO AI, BLOCKCHAIN, AND BIOMETRIC FUSION FOR FRAUD PREVENTION

Authors:

Ajay Tanikonda,Sudhakar Reddy Peddinti,Subba Rao Katragadda,

DOI NO:

https://doi.org/10.26782/jmcms.2025.09.00011

Keywords:

Artificial Intelligence (AI),Machine Learning (ML),Transformer Networks,Graph Neural Networks (GNNs),Fraud Detection,E-Commerce Security,

Abstract

The growing prevalence of e-commerce in global digital economies attracts more advanced forms of fraudulent practices. Security methods from the past have shown their limitations against the combination of assaults that target identity checks, transaction authentication mechanisms, and data integrity systems. A detailed technical model of secure e-commerce system development emerges by integrating present-day technologies across AI/ML with Blockchain cryptography and Biometric signal processing systems. The discussion analyzes leading-edge AI structures, updated cryptographic algorithms, and integrated biometric methods, resulting in a single fraud detection platform. The project covers system integration difficulties while validating performance and delivering complete specifications at the mathematical, procedural, and protocol levels. The paper evaluates results against industry standards before examining how edge devices and federated learning models can implement this system.

Refference:

I. A. Tanikonda, S. R. Peddinti, S. R. Katragadda : ‘Deep Learning for Anomaly Detection in E-Commerce and Financial Transactions: Enhancing Fraud Prevention and Cybersecurity.’ Journal of Information Systems Engineering and Management, vol. 10, no. 30s, 31 Mar. 2025, pp. 70–77. 10.52783/jisem.v10i30s.4776.
II. Ajayi S. , S. M. C. Loureiro, & D. Langaro: ‘Internet of things and consumer engagement on retail: state-of-the-art and future directions. EuroMed journal of business’. EuroMed Journal of Business. Vol. 18(3), pp: 397-423, 2023. https://www.emerald.com/emjb/article/18/3/397/83898/Internet-of-things-and-consumer-engagement-on
III. A. A. Alkuwaiti, & M. Al Mubarak: ‘Internet of Things in Water Distribution Systems. In Social Responsibility, Technology and AI’. Internet of Things in Water Distribution Systems. Vol. 23 pp: 143-159, 2024 https://www.emerald.com/books/edited-volume/17277/chapter-abstract/94250831/Internet-of-Things-in-Water-Distribution-Systems?redirectedFrom=fulltext
IV. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth : ‘Practical Secure Aggregation for Privacy-Preserving Machine Learning.’ Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS ’17), Association for Computing Machinery, 2017, pp. 1175–1191. 10.1145/3133956.3133982
V. Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann. : ‘Verifiable Distributed Aggregation Functions.’ IACR Cryptology ePrint Archive, Paper 2023/130, 2023. https://eprint.iacr.org/2023/130
VI. FIDO Alliance. : ‘Passkeys: Passwordless Authentication.’ FIDO Alliance, 24 July 2025. https://fidoalliance.org/fido2/
VII. Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.: ‘Generative Adversarial Nets.’ Advances in Neural Information Processing Systems 27 (NeurIPS 2014), 2014, https://proceedings.neurips.cc/paper_files/paper/2014/hash/f033ed80deb0234979a61f95710dbe25-Abstract.html
VIII. M. Gupta, M. V. Baisoya, & M. K. Rathore : ‘Review of Internet of Things (IoT) Networks using Edge Computing Techniques.’ SSRN, 4 Sep. 2024 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4946684
IX. Will Hamilton, Zhitao Ying, and Jure Leskovec. : ‘Inductive Representation Learning on Large Graphs.’ Advances in Neural Information Processing Systems 30 (NeurIPS 2017), 2017, https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
X. Y. N. Imamverdiyev, & F. I. Musayeva: ‘ANALYSIS OF GENERATIVE ADVERSARIAL NETWORKS.’ Problems of Information Technology, no. 1, 2022, pp. 20-27. https://jpit.az/ru/journals/297
XI. Khoshraftar, Shima, and Aijun An. : ‘A Survey on Graph Representation Learning Methods.’ ACM Transactions on Intelligent Systems and Technology, vol. 15, no. 1, Feb. 2024, Article 19, 55 pages. 10.1145/3633518.
XII. R. Kiss, and G. Szűcs. : ‘Unsupervised Graph Representation Learning with Inductive Shallow Node Embedding.’ Complex & Intelligent Systems, vol. 10, 2024, pp. 7333–7348. https://link.springer.com/article/10.1007/s40747-024-01545-6
XIII. Z. Liu, J. Guo, K. Y. Lam, & J. Zhao : (2022). : Efficient dropout-resilient aggregation for privacy-preserving machine learning. IEEE Transactions on Information Forensics and Security, vol. 18, 2022, 1839-1854. https://ieeexplore.ieee.org/abstract/document/9757847
XIV. Liu, Z., J. Guo, K.-Y. Lam, and J. Zhao. : ‘Efficient Dropout-Resilient Aggregation for Privacy-Preserving Machine Learning.’ IEEE Transactions on Information Forensics and Security, vol. 18, 2023, pp. 1839–1854. https://ieeexplore.ieee.org/abstract/document/9830997
XV. S. Madakam, R. Ramaswamy, and S. Tripathi. : ‘Internet of Things (IoT): A Literature Review.’ Journal of Computer and Communications, vol. 3, 2015, pp. 164–173, https://www.scirp.org/journal/paperinformation?paperid=56616
XVI. Y. More, P. Ramachandran, P. Panda, A. Mondal, H. Virk, & D. Gupta.: An Efficient Secure Computation Framework for Secure Aggregation.’ arXiv, 15 Feb. 2022. https://arxiv.org/abs/2201.07730
XVII. G. Mwansa, and N. Mabanza. : ‘Review of Internet of Things Security Protocols – A Bibliometric Analysis.’ 2023 25th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, Republic of, 2023, pp. 394–400. IEEE. https://ieeexplore.ieee.org/abstract/document/10079641
XVIII. F. Qaswar, M. Rahmah, M. A. Raza, A. Noraziah, B. Alkazemi, Z. Fauziah, M. K. A. Hassan, and A. Sharaf. : ‘Applications of Ontology in the Internet of Things: A Systematic Analysis.’ Electronics, vol. 12, no. 1, 2023, Article 111. 10.3390/electronics12010111
XIX. S. R. Katragadda, A. Tanikonda, S. R. Peddinti : ‘Deep Learning for Autonomous Data Quality Enhancement: A Paradigm Shift in Machine Learning Pipelines’. Journal of Information Systems and Education Management, vol. 10 no. 30s, 2025 pp. 602–609. 10.52783/jisem.v10i19s.3102
XX. Kunal Yogen Sevak, and Babu George. : “The Evolution of Internet of Things (IoT) Research in Business Management: A Systematic Review of the Literature.” Journal of Internet and Digital Economics, vol. 4, no. 3, 6 Nov. 2024, pp. 242–265. https://www.emerald.com/jide/article/4/3/242/1212329/The-evolution-of-Internet-of-Things-IoT-research
XXI. J. So, R. E. Ali, B. Güler, J. Jiao, and A. S. Avestimehr. : ‘Securing Secure Aggregation: Mitigating Multi-Round Privacy Leakage in Federated Learning’. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, no. 8, June 2023, pp. 9864-73. 10.1609/aaai.v37i8.26177.
XXII. Hua Sun. : ‘Secure aggregation with an oblivious server’. arXiv, 2023. https://arxiv.org/abs/2307.13474
XXIII. S. B. Verma. : (2022). Emerging Trends in IoT and Computing Technologies. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B33%5D%09Verma%2C+S.+B.+%282022%29.+Emerging+Trends+in+IoT+and+Comp
XXIV. L. Wang, M. Polato, A. Brighente, M. Conti, L. Zhang, and L. Xu. : ‘PriVeriFL: Privacy-Preserving and Aggregation-Verifiable Federated Learning.’ IEEE Transactions on Services Computing, vol. 18, no. 2, Mar.-Apr. 2025, pp. 998–1011. 10.1109/TSC.2024.3451183
XXV. L. Wang, S. Shi, F. Ma, F. R. Yu, P. Li, and Y. T. He. : ‘Subgraph Invariant Learning Towards Large-Scale Graph Node Classification’. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, no. 20, Apr. 2025, pp. 21144-52. 10.1609/aaai.v39i20.35412.
XXVI. Y. Wang, Y. Y. Chang, Y. Liu, J. Leskovec, & P. Li. : ‘Inductive representation learning in temporal networks via causal anonymous walks’. arXiv, arXiv:2101.05974. https://arxiv.org/abs/2101.05974
XXVII. L. Yang, C. Chatelain, and S. Adam. : ‘Dynamic Graph Representation Learning With Neural Networks: A Survey.’ IEEE Access, vol. 12, 2024, pp. 43460–43484. https://ieeexplore.ieee.org/abstract/document/10473053
XXVIII. Hong-Yu Yao, Chun-Yang Zhang, Zhi-Liang Yao, C. L. Philip Chen, and Junfeng Hu. : ‘A Recurrent Graph Neural Network for Inductive Representation Learning on Dynamic Graphs.’ Pattern Recognition, vol. 154, 2024, Article 110577. 10.1016/j.patcog.2024.110577
XXIX. Ying, Rex, Tianyu Fu, Andrew Wang, Jiaxuan You, Yu Wang, and Jure Leskovec. : ‘Representation Learning for Frequent Subgraph Mining.’ arXiv, 2024. arxiv.org/abs/2402.14367
XXX. Zhang, Chaoyu, and Shaoyu Li. : ‘State-of-the-Art Approaches to Enhancing Privacy Preservation of Machine Learning Datasets: A Survey.’ arXiv, 2024. arxiv.org/abs/2404.16847.

View Download