A MODIFIED CLOSED-TYPE HYBRID QUADRATURE FOR THE NUMERICAL SOLUTION OF SINGULAR COMPLEX-VALUED INTEGRALS

Authors:

Bibhuranjan Nayak,Shubhankar Palai,Dwiti Krushna Behera,Tusar Singh,

DOI NO:

https://doi.org/10.26782/jmcms.2025.07.00010

Keywords:

Cauchy principal value integrals,Gauss-Legendre transformed rule,closed-type anti-Gaussian transformed rule,mixed rule,singularity,

Abstract

A novel closed-type modified anti-Gaussian 4-point transformed rule has been developed for solving Cauchy principal value complex integrals. Furthermore, a more precise mixed quadrature rule MQ(f), has been created by combining the closed-type modified quadrature rule with the Gauss-Legendre 2-point transformed technique. Theoretical analysis of errors confirms the enhanced performance of the newly proposed quadrature rule. Numerical computation of various sample integrals is performed. The numerical calculations demonstrate the superiority of the new rule among others.

Refference:

I. B. P. Acharya, and R. N. Das, “Numerical evaluation of singular integrals of complex valued function”, Journal of mathematical sciences, Volume : 14,Issue : 15,1980, pp : 40-44.
https://www.iosrjournals.org/iosr-jm/pages/v14(3)Version-3.html
II. D. K. Behera , A. K. Sethi and R.B. Dash, “An Open Type Mixed Quadrature Rule Using Fejer and Gaussian Quadrature Rules”, American International Journal of Research in Science, Technology, Engineering and Mathematics, Volume : 9 Issue : 3 ,2015, pp : 265-268.
https://www.researchgate.net/publication/308750557_An_Open_type_Mixed_Quadrature_Rule_using_Fejer_and_Gaussian_Quadrature_Rules
III. D. K. Behera, D. Das and R. B. Dash, “On the Evaluation of Integrals of Analytic Functions in Adaptive Integration Scheme”, Bulletin of the Cal. Math. Soc.,Volume : 109, Issue : 3,2017, pp : 217-228.
https://www.calmathsociety.co.in/cmsPublications.html
IV. D. P. Laurie, “Anti-Gaussian Quadrature formulas”, Mathematics of Computation, A.M.S., Volume : 65, Issue : 214, 1996, pp : 739-747.
https://scispace.com/pdf/anti-gaussian-quadrature-formulas-1ud9xeaxgr.pdf
V. F. G. Lether, “On Birkoff-Young quadrature of analytic functions”, J.comput. Appl. Math., Volume : 2,1976, pp : 81-84 .
10.1016/0771-050X(76)90012-7
VI. G. Pradhan and S. Das, “A Low Precision Quadrature Rule for Approximate Evaluation of Complex Cauchy Principal Value Integrals” ,IOSR Journal of Mathematics (IOSR-JM), Volume : 13, Issue : 3,2018, pp : 21-25 .
https://www.iosrjournals.org/iosr-jm/papers/Vol14-issue3/Version-3/E1403032125.pdf
VII. H. O. Bakodah and M. A. Darwish, “Numerical solutions of quadratic integral equations”, Life Sc. Journal, Volume : 11 , Issue : 9, 2014, pp : 73-77.
https://www.lifesciencesite.com/lsj/life1109/011_24621life110914_73_77.pdf
VIII. J. F. Price, “Discussion of quadrature formulas for use on digital computer”, Rep. D1-82-0052, Boeing Sci, Res. Labe, 1960.
https://scholar.google.com/scholar_lookup?title=Discussion%20of%20quadrature%20formulas%20for%20use%20on%20digital%20computers&publication_year=1960&author=J.F.%20Price
IX. Kendall E. Atkinson, “An Introduction to Numerical Analysis”, Wiley Student edition , 2012
https://math.science.cmu.ac.th/docs/qNA2556/ref_na/Katkinson.pdf
X. Philip J. Davis, Philip Rabinowitz: Methods of Numerical Integration, Academic Press, Inc., Orlando, FL ,1984. 10.1137/1018104
XI. R. B. Dash, and D. Das, “A Mixed Quadrature Rule by Blending Clenshaw-Curtis and Gauss-Legendre Quadrature Rules for Approximation of Real Definite Integrals in Adaptive Environment”, Proceeding of the International Multi Conference of Engineers and Computer Scientists, Volume : 1, 2011, pp :16-18.
https://www.researchgate.net/publication/50864208_A_Mixed_Quadrature_Rule_by_Blending_Clenshaw-Curtis_and_Gauss-Legendre_Quadrature_Rules_for_Approximation_of_Real_Definite_Integrals_in_Adaptive_Environment
XII. R. N. Das and G. Pradhan, “A Mixed Quadrature Rule for Approximate Evaluation of Real Definite Integrals”, Int. J. Math. Educ. Sci. and Tech., Volume : 27, Issue : 2,1996, pp 279-283. 10.1080/0020739960270214
XIII. R. N. Das and M. K. Hota, “A Derivative Free Quadrature Rule for Numerical Approximations of Complex Cauchy Principal Value of Integrals”, Applied Mathematical Sciences, Volume : 6, Issue : 111, 2012,pp : 5533-5540.
https://www.researchgate.net/publication/264889398_A_Derivative_Free_Quadrature_Rule_for_Numerical_Approximations_of_Complex_Cauchy_Principal_Value_Integrals
XIV. S. D. Conte and C De Boor, “Elementary Numerical Analysis”, Third Edition, McGraw-Hill ,1980.
https://www.hlevkin.com/hlevkin/60numalgs/Fortran/conte-deBoor-ELEMENTARY%20NUMERICAL%20ANALYSIS.pdf
XV. S. K. Mohanty and R. B. Dash, “A Generalized Quartic Quadrature Based Adaptive Scheme”, International Journal of Applied and Computational Mathematics,Volume:8,Isuue:4,2022,pp:1-25. 10.1007/s40819-022-01405-2
XVI. S. K. Mohanty and R. B. Dash, “A quadrature rule of Lobatto-Gaussian for Numerical integration of Analytic functions”, Numerical Algebra Control and Optimization, Volume:12, Issue:4, 2022, pp:705-718. 10.3934/naco.2021031.
XVII. S. K. Mohanty and R. B. Dash, “A Triangular Quadrature for Numerical Integration of Analytic Functions”, Palestine Journal of Mathematics, Volume : 11, Issue : 3,2022, pp:53-61.
https://pjm.ppu.edu/sites/default/files/papers/PJM_SpecialIssue_III_August_22_53_to_61.pdf
XVIII. T. Singh, D. K. Behera, R.K. Saeed and S. A. Edalatpanah, “A novel quadrature rule for integration of analytic functions”, Journal of mechanics of continua and mathematical sciences,Volume : 20, Issue : 2, 2025, pp : 28 – 38. 10.26782/jmcms.2025.02.00003

View Download