ON DESIGN OF PREDICTIVE MODEL FOR HEART DISEASE

Authors:

Soumyendu Bhattacharjee,Susmita Das,Sangita Roy,Arpita Santra,Anasuya Sarkar,Moumita Pal,Biswarup Neogi,

DOI NO:

https://doi.org/10.26782/jmcms.2025.06.00007

Keywords:

Predictive Model,Random Forest Classifier,KNN,Logistic Regression,

Abstract

Because it regularly results in more spending than any other explanation, coronary disease is the leading source of fear and mortality on a global scale. The WHO estimates that 17.9 million people died annually from heart disease in 2016, which accounted for 31% of all deaths. More than 75% of these fatalities occurred in developing and middle-income nations. We create a coronary disease prediction model based on the patient's clinical history to assess whether or not the patient is most likely to develop a coronary illness. We used several artificial intelligence (AI) techniques, such as the critical backslide and KNN, to predict and group patients with cardiovascular sickness. The given coronary illness hypothesis system utilizes clinical reasoning and reduces the cost. We categorize a patient based on 14 medical characteristics or features to determine whether they are likely to develop a heart condition to anticipate this. Three algorithms are used to train these medical features: Random Forest Classifier, KNN, and Logistic Regression.

Refference:

I. Adelstein, E.C., Liu, J., Jain, S., et al. “Clinical outcomes in cardiac resynchronization therapy-defibrillator recipients 80 years of age and older”. Europace. 2016;18(3):420. 10.1093/europace/euv222.
II. Alba, A.C, Braga, J., Gewarges, M., Walter, S.D., Guyatt, G.H., Ross, H.J. “Predictors of mortality in patients with an implantable cardiac defibrillator: a systematic review and meta-analysis.” Can J Cardiol. 2013;29(12):1729–40. 10.1016/j.cjca.2013.09.024.
III. Bernardini, A., Bindini, L., Antonucci E., Berteotti M., Giusti B., Testa S., Palareti G., Poli D., Frasconi, P., Marcucci, R. “Machine learning approach for prediction of outcomes in anticoagulated patients with atrial fibrillation.” Int J Cardiol. 2024;15(407):132088. 10.1016/j.ijcard.2024.132088
IV. Bozkurt, B.; Ahmad, T.; Alexander, K.M.; Bosak, K.; Breathett, K.; Fonarow, G.C.; Heidenreich, P.; Ho, J.E.; Hsich, E.; Ibrahim, N.E.; et al. “Heart failure epidemiology and outcomes statistics: A report of the Heart Failure” Society of America. J. Card. Fail. 2023, 29, 1412–1451. 10.1016/j.cardfail.2023.07.006
V. Behon, A, Merkel, E.D., Schwertner, W.R., et al. “Long-term outcome of cardiac resynchronization therapy patients in the elderly.” Geroscience. 2023;45(4):2289–301. 10.1007/s11357-023-00739-z. Epub 2023 Feb 17.
VI. Cebro-Márquez, M.; Rodríguez-Mañero, M.; Serrano-Cruz, V.; Vilar-Sánchez, M.E.; González-Melchor, L.; García-Seara, J.; Martínez-Sande, J.L.; Aragón- Herrera, A.; Martínez-Monzonís, M.A.; González-Juanatey, J.R.; et al. “Plasma miR-486-5p Expression Is Upregulated in Atrial Fibrillation Patients with Broader Low-Voltage Areas.” Int. J. Mol. Sci. 2023, 24, 15248. 10.3390/ijms242015248
VII. Förster, C.Y.; Künzel, S.R.; Shityakov, S.; Stavrakis, S. Synergistic “Effects of Weight Loss and Catheter Ablation: Can microRNAs Serve as Predictive Biomarkers for the Prevention of Atrial Fibrillation Recurrence?” Int. J. Mol. Sci. 2024, 25, 4689. 10.3390/ijms25094689
VIII. Ghio, S., Freemantle, N., Scelsi, L., et al. Long-term left ventricular reverse remodelling with cardiac resynchronization therapy: results from the CARE-HF trial. Eur J Heart Fail. 2009;11(5):480–8. 10.1093/eurjhf/hfp034. Epub 2009 Mar 14
IX. Lippi, G.; Sanchis-Gomar, F. “Global epidemiology and future trends of heart failure.” AME Med. J. 2020, 5, 15. 10.21037/amj.2020.03.03
X. Lofrumento, F.; Irrera, N.; Licordari, R.; Perfetti, S.; Nasso, E.; Liotta, P.; Isgrò, G.; Garcia-Ruiz, V.; Squadrito, F.; Carerj, S.; et al. “Off-target effects of P2Y12 receptor inhibitors: Focus on early myocardial fibrosis modulation.” Int. J. Mol. Sci. 2023, 24, 17546. 10.3390/ijms242417546
XI. L’Abbate, S.; Nicolini, G.; Marchetti, S.; Forte, G.; Lepore, E.; Unfer, V.; Kusmic, C. “Lithium treatment induces cardiac dysfunction in mice.” Int. J. Mol. Sci. 2023, 24, 15872. 10.3390/ijms242115872
XII. Picchio, V.; Gaetani, R.; Pagano, F.; Derevyanchuk, Y.; Pagliarosi, O.; Floris, E.; Cozzolino, C.; Bernava, G.; Bordin, A.; Rocha, F.; et al. “Early impairment of paracrine and phenotypic features in resident cardiac mesenchymal stromal cells after thoracic radiotherapy.” Int. J. Mol. Sci. 2024, 25, 2873. 10.3390/ijms25052873
XIII. Sunagawa, Y.; Tsukabe, R.; Irokawa, Y.; Funamoto, M.; Suzuki, Y.; Yamada, M.; Shimizu, S.; Katanasaka, Y.; Hamabe-Horiike, T.; Kawase, Y.; et al. Anserine, “A histidine-containing dipeptide, suppresses pressure overload-induced systolic dysfunction by inhibiting histone acetyltransferase activity of p300 in mice.” Int. J. Mol. Sci. 2024, 25, 2344. 10.3390/ijms25042344
XIV. Salvatori, F.; D’Aversa, E.; Serino, M.L.; Singh, A.V.; Secchiero, P.; Zauli, G.; Tisato, V.; “Epigenetic tuning of wall remodelling in the early phase after myocardial infarction: A novel epidrug approach.” Int. J. Mol. Sci. 2023, 24, 13268. 10.3390/ijms241713268
XV. Thorkelsson, A.; Chin, M.T. “Role of the Alpha-B-crystallin protein in cardiomyopathic disease.” Int. J. Mol. Sci. 2024, 25, 2826. 10.3390/ijms25052826
XVI. Zheng, H.; Xu, Y.; Liehn, E.A.; Rusu, M. “Vitamin C as scavenger of reactive oxygen species during healing after myocardial infarction.” Int. J. Mol. Sci. 2024, 25, 3114. 10.3390/ijms25063114
XVII. Zhang,H.; Dhalla, N.S. “The role of pro-inflammatory cytokines in the pathogenesis of cardiovascular disease.” Int. J. Mol. Sci. 2024, 25, 1082. 10.3390/ijms25021082

View Download