A SCIENTIFIC APPROACH TO CONTROL THE SPEED DEVIATION OF DUAL REGULATED LOW-HEAD HYDRO POWER PLANT CONNECTED TO SINGLE MACHINE INFINITE BUS

Nagendrababu Mahapatruni¹, Velangini Sarat P.², Suresh Mallapu³, Durga Syamprasad K.⁴

1Associate Professor, Department of Mechanical Engineering, Vignan’s Institute of Engineering For Women, Visakhapatnam, Andhra Pradesh - 46, India
2,3,4Assistant Professor, Department of Electrical & Electronics Engineering, Vignan’s Institute of Engineering For Women, Visakhapatnam, Andhra Pradesh - 46, India

¹nagye@ymail.com, ²sarath.pilla283@gmail.com, ³mlpsuresh@gmail.com, ⁴kdurgasyam@gmail.com

Corresponding Author: Nagendrababu Mahapatruni

https://doi.org/10.26782/jmcms.2020.08.00013

Abstract

Analysis of single machine infinite bus system is made by considering single Kaplan turbine-generators with exciter and governor for the small-signal stability. In this research paper a scientific approach was adopted to minimize the settling time along with the stability of the given power system. Kaplan turbine generators were predominantly implemented in hydroelectric power plants with lower heads. However, dual regulation of such turbines in the plants are renowned in the current research trends. The dual regulation of hydro-turbine is incorporated through the operation of both wicket gate and runner blade position. In a worldwide scenario Kaplan turbine-generators play a vital role in power and energy generation. Whereas the life of these generator gates or runner blades depends on speed deviations. In this context, a PID controller has been designed for the extended single machine infinite bus system to improve the speed deviation. The results of the extended single machine infinite bus system are compared with and without PID controller for the enhancement of speed deviation.

Keywords: Power System, Extended SMIB, Governor, Speed deviation, PID controller.

I. Introduction

Electrical power systems are one of the complex constituents required for the generation, transmission along with large scale distribution of Electrical Energy
through any power or energy source. Such power systems should be capable of periodical adaptability to variable load demands corresponding to active and reactive power. Complex power system stability will be the state of operating equilibrium at normal operating conditions. (Chan & Aung, 2020) Synchronous machines in such power systems will have huge significance and wide range of applications in hydro prime movers such as turbines. In the emerging researches in power systems stability, the major challenge is in adequate damping of the corresponding system oscillations. Hence, in analyzing the stability of such power systems signal, a linearized illustration model was preferred to illustrate the required power system and its components. (Czeslaw Banka, 2017) The illustrations itself gives the state space representation with various operational inputs and outputs along with the internal behavior of the system. Transfer functions are one of prominent representations which illustrates the behavior of the input and output while a state-space illustration represents the system along with the transfer function along with its defined characteristics. (Ghosh, Das, & Sanyal, 2019) The context to the current research with the application state-space representation will give the complete details of the power system that can be significantly applied to the analysis of Multi-Variable MIMO systems which are ideal for optimized speeds versus toque characteristics. Present research is on use of pressure signal for speed control of hydro generator. Presently SMIB is extended to dual regulation of low- head hydro power plant with wicket gate opening and runner blade position for controlling the water pressure. The results of extended single machine infinite bus system are compared with and without PID controller for speed deviations. (Machowski, Bialek, & Bumby, 2020)

II. Mathematical Modeling of Extended Smib

Considering a single machine system neglecting damper windings both in the d and q axes. By neglecting the armature resistance of the machine, the excitation system is represented by a single time constant system is shown in Fig.1. (Bux, Xiao, Hussain, & Wang, 2019) The linearized model of SMIB is derived as follows:

The linearized model of SMIB is derived as follows:

The algebraic equations of the stator are

$$E'_q + x'_d i_d = v_q$$

(1)
The complex terminal voltage can be expressed as

\[v_Q + jv_D = (v_q + jv_d)e^{j\delta} = (i_q + ji_d)(R_e + jx_e)e^{j\delta} + E_b e^{-j\delta} \]

From equations (1), (2) and (3) the expressions for \(i_d\) and \(i_q\) are

\[i_d = \frac{1}{A}
\left[R_e E_b \cos \delta_o - (x_q + x_e)(E_b \cos \delta - E_q') \right] \]

\[i_q = \frac{1}{A}
\left[(x_d' + x_e)E_b \sin \delta - R_e (E_b \cos \delta - E_q') \right] \]

Where,

\[A = (x_d' + x_e)(x_q + x_e) + R_e^2 \]

Linearizing Equations. (4) and (5) we get

\[\Delta i_d = C_1 \Delta \delta + C_2 \Delta E_q' \]

\[\Delta i_q = C_3 \Delta \delta + C_4 \Delta E_q' \]

Where,

\[C_1 = \frac{1}{A}
\left[R_e E_b \cos \delta_o - (x_q + x_e)E_b \sin \delta_o \right] \]

\[C_2 = -\frac{1}{A}(x_q + x_e) \]

\[C_3 = \frac{1}{A}
\left[(x_d' + x_e)E_b \cos \delta_o + R_e E_b \sin \delta_o \right] \]

\[C_4 = \frac{R_e}{A} \]

Linearizing Equations. (1) and (2), and substituting from Equations. (7) and (8), we get,

\[\Delta v_q = x_d' C_1 \Delta \delta + (1 + x_d' C_2) \Delta E_q' \]

\[\Delta v_d = -x_q C_3 \Delta \delta - x_q C_4 \Delta E_q' \]

The subscript ‘o’ indicates operating value of the variable.

Rotor Mechanical Equations and Torque Angle Loop:

The rotor mechanical equations are

\[\frac{d\delta}{dt} = \omega_o (S_m - S_{mo}) \]

\[2H \frac{dS_m}{dt} = -DS_m + T_m - T_e \]

\[T_e = E_q' i_q - (x_q - x_d') i_d q \]

Linearizing Eq. (13) we get

Nagendrababu Mahapatruni et al \]

138
\[\Delta T_e = [E_{qo} - (x_q - x_d')i_{do}]\Delta i_q + i_{qo}\Delta E_{q}' - (x_q - x_d')i_{qo}\Delta i_d \]

(13)

Substituting Equations. (7) and (8) in Eq. (14), we can express \(\Delta T_e \) as

\[\Delta T_e = K_1 \Delta \delta + K_2 \Delta E_{q}' \]

(14)

Where,

\[K_1 = E_{qo}C_3 - (x_q - x_d')i_{qo}C_1 \]

(15)

\[K_2 = E_{qo}C_4 + i_{qo} - (x_q - x_d')i_{qo}C_2 \]

(16)

\[E_{qo} = E_{qo}' - (x_q - x_d')i_{do} \]

(17)

Liberalizing Eqns. (11) and (12) and applying Laplace transform, we get

\[\Delta \delta = \frac{\omega_0}{s} \Delta S_m = \frac{\omega_0}{s} \Delta \bar{\omega} \]

(18)

\[\Delta S_m = \frac{1}{2Ms} [\Delta T_m - \Delta T_e - D\Delta S_m] \]

(19)

The combined Equations. (15), (19) and Eq. (20) represent a block diagram shown in Fig. 2. This represents the torque-angle loop of the synchronous machine.

Fig. 2: Block diagram of Torque angle loop

Representation of Flux Decay:

The equation for the field winding can be expressed as

\[T_{do}' \frac{dE_q'}{dt} = E_f a - E_q' + (x_d - x_d')i_d \]

(20)

Linearizing Eq. (21) and substituting from Eq. (7) we have

\[T_{do}' \frac{d\Delta E_q'}{dt} = \Delta E_{fd} - \Delta E_q' + (x_d - x_d')(C_3\Delta \delta + C_2\Delta E_q') \]

(21)

Taking Laplace transform of above equation we get,

\[(1 + sT_{do}'K_3)\Delta E_q' = K_3\Delta E_{fd} - K_3K_4\Delta \delta \]

(22)

Where,
\[K_3 = \frac{1}{1 - (x_d - x_d')c_2} \]
\[K_4 = -(x_d - x_q')c_1 \]

The equation (23) is represented in block diagram which is the representation of flux decay is shown in Fig.3.

The block diagram of the excitation system is shown in Fig 2.4. The linearized equations involved in the analysis are described below and the terminal voltage \(\Delta V_t \) can be expressed as

\[\Delta V_t = \frac{v_{do}}{V_{to}} \Delta v_d + \frac{v_{ao}}{V_{to}} \Delta v_q \]

Substituting from Equations. (2.12) and (2.13) in (2.31), we get

\[\Delta V_t = K_5 \Delta \delta + K_6 \Delta E'_q \]

Where,

\[K_5 = - \left(\frac{v_{do}}{V_{to}} \right) x_q c_3 + \left(\frac{v_{ao}}{V_{to}} \right) x_q' c_1 \]
\[K_6 = - \left(\frac{v_{do}}{V_{to}} \right) x_q c_4 + \left(\frac{v_{ao}}{V_{to}} \right) (1 + x_q' c_2) \]

Using the equation (27) the block diagram of the excitation system is obtained which is shown below in fig. 2.4.
Fig. 4: Block diagram of Excitation loop

Representation of Turbine Flow Control:

The water flow through the penstock was modelled by considering the inelastic water column effect. Hence, the stiff water hammer equation can be given as

\[
\frac{dh}{dt} = -T_w \frac{dw}{dt} \tag{29}
\]

The turbine flow “q” and the torque “m” in case of a Kaplan turbine are non-linear functions of head “h”, wicket gate opening “z”, machine speed w and runner blade position θ. For a given reference operating point, the partial derivative relationship between these variables is given as

\[
q = \frac{\delta q}{\delta h} h + \frac{\delta q}{\delta z} z + \frac{\delta q}{\delta w} w + \frac{\delta q}{\delta \theta} \theta \tag{30}
\]

\[
m = \frac{\delta m}{\delta h} h + \frac{\delta m}{\delta z} z + \frac{\delta m}{\delta w} w + \frac{\delta m}{\delta \theta} \theta \tag{31}
\]

\[
\frac{dq}{dt} = \frac{1}{T_{W1}} [T_1 h + T_2 z + T_3 w + T_4 \theta - q + T_0 \theta] \tag{32}
\]

The operation of Kaplan turbine involves control of the wicket gate and the runner blade position in order to regulate the water flow to the hydro-turbine. The corresponding servomotor equations are described as

\[
\frac{dz}{dt} = \frac{(U_{gov} - z)}{T_{sv}} \tag{33}
\]

\[
\frac{d\theta}{dt} = \frac{(U_{gov} - \theta)}{T_r}
\]

Where \(T_{sv}\) and \(T_{rb}\) are wicket gate and runner blade servomotor constants respectively. The third order synchronous generator model is described by the following set of deferential and algebraic Equations:
\[T_e \frac{dw}{dt} = m - m_l - Dw \] (34)

\[\frac{de_q}{dt} = \frac{1}{T_{do}} \left[E_{FD} - \frac{1}{K_3} e'_q - K_6 \delta \right] \] (35)

\[m_l = K_1 \delta + K_2 e'_q \]

Expressing the exciter equations are as follows:

\[\frac{dE_{FD}}{dt} = \frac{1}{T_E} [V_a - K_E E_{FD}] \] (36)

\[\frac{dv_a}{dt} = \frac{1}{T_A} [K_A V_{ref} + K_A u_{ex} - K_A V_t - K_A V_f - V_a] \] (37)

\[V_t = K_5 \delta_0 + K_6 \] (38)

\[\frac{dv_f}{dt} = \frac{1}{T_F} \frac{K_F K_E}{T_F T_E} E_{FD} \frac{K_F}{T_E} V_a - V_t \] (39)

The block diagram representation for turbine flow control is shown in fig.2.5, block diagram representation for runner blade position is shown in fig.2.6 and the block diagram representation for wicket gate opening is shown in above figure.

The dynamic characteristics of the extended SMIB system are expressed in terms of constants \(K_1 \) to \(K_9 \). The constants \(K_7, K_8 \) and \(K_9 \) are due to head \(h \), wicket gate opening \(z \), machine speed \(w \) and runner blade position \(\theta \) and they are,

\[K_7 = T_7 - (T_3 T_5)T_1 \] (40)

\[K_8 = T_6 - (T_3 T_2)T_1 \] (41)

\[K_B = T_B - (T_3 T_4)T_1 \] (42)

![Fig. 5: Block diagram of EXTENDED SMIB](image-url)
Where U_{gov}, U_{ex} are two input quantities
III. Controller

A PID (proportional–integral–derivative) controller was prescribed based on its damping controller along with the tuned fixed-gain parameters. A detailed illustration of the PID controlled was explained below.

Nagendrababu Mahapatruni et al
A PID controller intends to rectify the error between a measured process variable and a desired set point by evaluating and then executing a necessary corrective action that can rectify the process in accordance with system stability. The PID controller evaluation/calculation (algorithm) consists of three independent parameters; the Proportional, the Integral and the Derivative values. The Proportional value was used to determine the reaction to the speed deviation, the Integral value was used to determine the reaction based on the cumulative sum of recent errors, and the Derivative value was used to determine the reaction based on the rate of the variability of the error.

IV. Simulation Result

Simulations are done by using MATLAB Simulink. The graph drawn between speed deviation (y-axis) and time (x-axis).

Fig. 11: speed deviation with respect to time for SMIB

As we can see in the above figure that the speed deviation signal is completely unstable and it leads to power system failure.

Fig. 12: Speed deviation with respect to time for extended SMIB without controller

From the above figure Fig 12 it can clearly seen that the speed deviation with respect to time is stable and this improves or enhances the stability of the power system with high settling time.
As we can see power system with Extended SMIB with PID controller in the above illustration, settling time was minimised along with in the limited speed deviation which in turn increases the power system stability with less settling time.

From the above illustration it can be clearly seen the comparison of Extended SMIB with and without PID controller, blue indicates more settling time and red indicates with less settling time using PID controller. It can be observed the greater reduction in settling time with reliability of power system.

V. Conclusion

Dual regulation of extended low head hydro power plant is achieved by controlling both wicket gate opening and runner blade position, which is connected to single machine infinite bus system. From the step responses it has been observed that the speed deviation for EXTENDED SMIB with and without PID. Results are obtained that the desired speed could be reached in a short time by using controllers.
Appendix

<table>
<thead>
<tr>
<th>Main</th>
<th>Initialization</th>
<th>Output Saturation</th>
<th>Data Types</th>
<th>State Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Internal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional (P)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral (I)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Derivative (D)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use filtered derivative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter coefficient (%)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Automated tuning

Select tuning method: Transfer Function Based (PID Tuner App)

\[T_d = 0.05 \quad K_d = 400 \]

\[T_{dv} = 0.5 \quad T_A, T_E = 0.95, 0.05 \]

\[V_L = 1.05 \quad K_F = 0.025 \]

\[\delta_o = 65.1 \quad T_F = 1.0 \]

\[\times_q = 0.57 \quad \times_d = 0.360 \]

\[G + jB = 0.248 + j0.262 \quad R + jX = -0.34 + j0.926 \]

\[\times_a = 1.01 \quad D = 0 \]

\[T_{do} = 7.6 \quad V_{do} = 1.34 \]

\[\left(K_1 \to K_o \right) = 0.55, 1.16, 0.66, \quad 0.67, -0.99, 0.82 \quad T_{rb} = 1.4 \]

\[K_E = 1.010 \quad M = 9.6 \]

\[V_{0d} = 0.95 \quad 0_0 = 377.17 \]

References

Nagendrababu Mahapatruni et al

Nagendrababu Mahapatruni et al

XXI. Mashlakov, A. (2017). SIMULATION ON DISPERSED VOLTAGE CONTROL IN DISTRIBUTION NETWORK.

XXIII. Mazhari, I. (2017). DC MICROGRID WITH CONTROLLABLE LOADS.

