GLIVENKO CONGRUENCE ON A 0-DISTRIBUTIVE MEET SEMILATTICE

By
Momtaz Begum

Department of ETE, Prime University, Dhaka, Bangladesh.

Abstract:

In this paper the author studies the Glivenko congruence \(R \) in a 0-distributive meet semilattice. It is proved that a meet semilattice \(S \) with 0 is 0-distributive if and only if the quotient semilattice \(\frac{S}{R} \) is distributive. Hence \(S \) is 0-distributive if and only if \((0]\) is the kernel of some homomorphism of \(S \) onto a distributive meet semilattice with 0.

Key words and phrases: Glivenko congruence, 0-distributive semilattice, distributive meet semilattice.

Introduction:

J.C. Varlet [7] first introduced the concept of 0-distributive lattices. Then many authors including [1,2,3,5] studied them for lattices and semilattices. By [2], a meet semilattice \(S \) with 0 is called 0-distributive if for all \(a,b,c \in S \) with \(a \land b = 0 = a \land c \) imply \(a \land d = 0 \) for some \(d \geq b,c \). A meet semilattice \(S \) is called directed above if for all \(a,b \in S \), there exists \(c \in S \) such that \(c \geq a,b \). We know that all modular and distributive semilattices have the directed above property. Moreover, [3] have shown that every 0-distributive meet semilattice is directed above.

Let \(S \) be a meet semilattice with 0. For a non-empty subset \(A \) of \(S \), we define \(A^{\perp} = \{ x \in S \mid x \land a = 0 \text{ for all } a \in A \} \). This is clearly a down set, but we can not prove that this is an ideal even in a distributive meet semilattice, when \(A \) is infinite.

By [2,3] we know that, for any \(a \in S \), \(\{a\}^{\perp} \) is an ideal if and only if \(S \) is 0-distributive.

We define a relation \(R \) on a meet semilattice \(S \) by \(a \equiv b(R) \) if and only if \(\{a\}^{\perp} = \{b\}^{\perp} \). In other words, \(a \equiv b(R) \) is equivalent to “for each \(x \in S \), \(a \land x = 0 \) if and only if \(b \land x = 0 \)”.
We will show below that this is a congruence on the meet semilattice S. We call it Glivenko congruence. In this paper we establish some results on this congruence in a meet semilattice.

We start with the following result which is due to [3]. We include its proof for the convenience of the reader.

Lemma 1: Let S be a meet-semilattice with 0. Again let $A, B \subseteq S$ and $a, b \in S$ then we have the followings:

- (i) If $A \cap B = (0)$, then $B \subseteq A^\perp$
- (ii) $A \cap A^\perp = (0)$,
- (iii) $A \subseteq B$ imply that $B^\perp \subseteq A^\perp$
- (iv) If $a \leq b$ imply that $\{b\}^\perp \subseteq \{a\}^\perp$ and $\{a\}^{\perp \perp} \subseteq \{b\}^{\perp \perp}$
- (v) $\{a\}^\perp \cap \{a\}^{\perp \perp} = (0)$
- (vi) $\{a \wedge b\}^{\perp \perp} = \{a\}^{\perp \perp} \cap \{b\}^{\perp \perp}$
- (vii) $A \subseteq A^{\perp \perp}$
- (viii) $A^{\perp \perp \perp} = A^\perp$

Proof: (i) Let $b \in B$. Then $a \wedge b = 0$ for all $a \in A$, as $A \cap B = (0)$. Thus $b \in A^\perp$. Hence $B \subseteq A^\perp$.

(ii) Let $x \in A \cap A^\perp$.

\[x \in A \text{ and } x \wedge a = 0 \text{ for all } a \in A \]

\[x \wedge x = 0 \]

\[x = 0 \]

(iii) Let $A \subseteq B$

\[\therefore A \cap B^\perp \subseteq B \cap B^\perp = (0) \]

\[\Rightarrow A \cap B^\perp = (0) \]

So, by (i), $B^\perp \subseteq A^\perp$.

(iv) Let $x \in \{b\}^\perp$. Then $b \wedge x = 0$ for some $x \in S$. Since $a \leq b$, then we have $a \wedge x = 0$ for some $x \in S$, which imply that $x \in \{a\}^\perp$.

Hence, $\{b\}^\perp \subseteq \{a\}^\perp$.

Now let $x \in \{a\}^{\perp \perp}$. Then $y \wedge x = 0$ for all $y \in \{a\}^\perp$, which implies that $y \wedge x = 0$ for all $y \in \{b\}^\perp$ as $\{b\}^\perp \subseteq \{a\}^\perp$. Thus $x \in \{b\}^{\perp \perp}$.

Hence,
\(\{a\}^\perp \subseteq \{b\}^\perp \).

(v) Let \(x \in \{a\}^\perp \cap \{a\}^\perp \). Then \(x \in \{a\}^\perp \) and \(x \in \{a\}^\perp \) which implies that \(x \land a = 0 \) and \(x \land y = 0 \) for all \(y \in \{a\}^\perp \). Thus \(x \land x = 0 \).
Hence
\[\{a\}^\perp \cap \{a\}^\perp = \{0\} \]

(vi) Let \(x \in \{a\}^\perp \cap \{b\}^\perp \) and \(y \in \{a \land b\}^\perp \). Then we get \((y \land a) \land b = 0 \), which implies that \((y \land a) \in \{b\}^\perp \). Since \(x \in \{b\}^\perp \), we get \((x \land y) \land a = 0 \).
Hence \(x \land y \in \{a\}^\perp \). Since \(x \in \{a\}^\perp \), we get \(x \land y \in \{a\}^\perp \). Thus \(x \land y = 0 \) for all \(y \in \{a \land b\}^\perp \). Therefore \(x \in \{a \land b\}^\perp \). Thus \(\{a\}^\perp \cap \{b\}^\perp \subseteq \{a \land b\}^\perp \).

Conversely we can write that \(a \land b \leq a \), which implies by (i) \(\{a \land b\}^\perp \subseteq \{a\}^\perp \). Similarly \(\{a \land b\}^\perp \subseteq \{b\}^\perp \). Therefore we have, \(\{a \land b\}^\perp \subseteq \{a\}^\perp \cap \{b\}^\perp \).

(vii) Let \(x \in A \), consider any \(r \in A^\perp \), then we get \(x \land a = 0 \) for all \(a \in A \) which implies that \(r \land x = 0 \). Since \(x \land r = 0 \) for all \(r \in A^\perp \). Thus \(x \in A^\perp \). Hence \(A \subseteq A^\perp \).

(viii) Since by (vii) \(A \subseteq A^\perp \). So by (iii) \((A^\perp)^\perp \subseteq A^\perp \).
Hence \(A^\perp \subseteq A^\perp \). Since by (vii) \(A^\perp \subseteq (A^\perp)^\perp = A^\perp \). Therefore we have \(A^\perp = A^\perp \).
Hence the proof is completed. \(\square \)

Theorem 2: \(R \) is a meet congruence on \(S \).

Proof: It is clearly an equivalent relation.

Let \(a \equiv b(R) \) and \(t \in S \)

Then \(\{a\}^\perp = \{b\}^\perp \), so by using Lemma 1, we have \(\{a \land t\}^\perp = \{a \land t\}^\perp \)
\[= \{\{a\}^\perp \land \{t\}^\perp \}^\perp \]

1420
This implies \(a \land t \equiv b \land t(R) \), and so \(R \) is a meet congruence on \(S \).

A meet semilattice \(S \) with 0 is weakly complemented if for any pair of distinct elements \(a \), \(b \) of \(S \), there exists an element \(c \) disjoint from one of these elements but not from the other. In particular, if \(a < b \), then there exists \(c \in S \) such that \(a \land c = 0 \) but \(b \land c \neq 0 \).

Theorem 3: If \(S \) is weakly complemented, then \(R \) is an equality relation.

Proof: Suppose \(a, b \in S \) with \(a \neq b \). Since \(S \) is weakly complemented, so there exist \(x \in S \), \(a \land x = 0 \) but \(b \land x \neq 0 \). This implies \((a, b) \notin R \). Hence \(R \) is an equality relation.

Theorem 4: For any meet semilattice \(S \), \(S \) is also a meet semilattice. Moreover \(S \) is directed above if and only if \(S \) is directed above.

Proof: For \([a], [b] \in \frac{S}{R} \), define \([a]R \land [b]R = [a \land b]R \). Thus \(\frac{S}{R} \) is a meet semilattice.

Now let \(a, b \in S \). If \(S \) is directed above, then there exists \(d \geq a, b \).

Now, \([a]R \land [d]R = [a \land d]R = [a]R \) and \([b]R \land [d]R = [b \land d]R = [b]R \)

Implies \([d]R \geq [a]R, [b]R \). Thus, \(\frac{S}{R} \) is also directed above.

Conversely suppose \(\frac{S}{R} \) is directed above. Let \(a, b \in S \)

Then \([a], [b] \in \frac{S}{R} \). Since \(\frac{S}{R} \) is directed above, so there exists \(C \in \frac{S}{R} \) such that \(C \geq [a]R, [b]R \). Then there exists \(d \in C \), such that \([d] = C \) and \(d \geq a, b \). So \(S \) is directed above.

A meet semilattice \(S \) is called a *distributive semilattice* if \(w \geq a \land b \) implies that there exist \(x \geq a \), \(y \geq b \) in \(S \) such that \(w = x \land y \).
Following result gives some characterizations of distributive meet semilattices which are due to [4, Theorem 1.1.6], also see [6].

Lemma 5: For a meet semilattice S, the following conditions are equivalent.

i) S is distributive.

ii) $w \geq a \land b$ implies that there exists $y \in S$ such that $y \geq b$, $y \geq w$ and $y \land a = a \land w$.

iii) $a \land b = b \land c$ implies that there exists $y \in S$ such that $y \geq b$, $y \geq c$ and $y \land a = a \land c$.

Theorem 6: For any meet semilattice S, the quotient meet semilattice $\frac{S}{R}$ is weakly complemented. Furthermore, S is 0-distributive if and only if $\frac{S}{R}$ is distributive.

Proof: First part: For any meet semilattice S, when $A < B$ in $\frac{S}{R}$, there exists $a \in A$ and $b \in B$ such that $a < b$, and by the definition of R, there is an element c such that $0 = \bot c a$ and $0 \neq \bot b c$. Since the minimum class of $\frac{S}{R}$ has the only element 0, the class C of c satisfies $A \land C = [0]$ and $C \land B \neq [0]$. Therefore, $\frac{S}{R}$ is weakly complemented.

For second part: Let S be 0-distributive. Suppose $B \geq A \land C$ in $\frac{S}{R}$. So there exists $b \in B$, $a \in A$, $c \in C$ such that $b \geq a \land c$ and $B = [b]R$, $A = [a]R$, $C = [c]R$. Suppose $a \land b \land x = 0$. Then $a \land c \land x = 0$. Since S is 0-distributive, so there exists $d \geq b, c$ such that $a \land d \land x = 0$. On the other hand, for any $d \geq b, c$, $a \land d \land x = 0$ implies $a \land d \land x \land b = a \land b \land x = 0$. Therefore, $a \land b \equiv a \land d(R)$ for some $d \geq b, c$. In other words, $A \land B = A \land D$ where $D = [d] \geq B, C$.

Therefore by [4, Theorem 1.1.6 (ii)], $\frac{S}{R}$ is distributive.

Conversely, suppose $\frac{S}{R}$ is distributive. Let $a, b, c \in S$ with $a \land b = a \land c = 0$. Then $[a] \land [b] = [a] \land [c] = [0]R$. Since $[0]$ contains only the element 0, so $A \land B = A \land C = 0$, where $A = [a]$, $B = [b]$, $C = [c]$. Then $B \geq A \land C$. Since $\frac{S}{R}$ is distributive, so $B = A_i \land C_1$ for some $A_i \geq A$, $C_1 \geq C$.

Moreover, $B = A_i \land C_1$ implies $C_1 \geq B$. Thus $0 = A \land B = A \land A_i \land C = A \land C_1$.

1422
Now \(C_1 \geq B, C \) implies \(C_1 = [d]R \) for some \(d \geq b, c \). Therefore, \(a \land d = 0 \) for some \(d \geq b, c \) and so \(S \) is 0-distributive.

We conclude the paper with the following result.

Theorem 7: Let \(S \) be a meet semilattice. Then the following conditions are equivalent

(i) \(S \) is 0-distributive.

(ii) \((0) \) is the kernel of some homomorphism of \(S \) onto a distributive semilattice with 0.

(iii) \((0) \) is the kernel of a homomorphism of \(S \) onto a 0-distributive semilattice.

Proof:

(i) \(\Rightarrow \) (ii). Suppose \(S \) is 0-distributive. Then by Theorem 1, the binary relation \(R \) defined by \(x \equiv y(R) \iff (x)^+ = (y)^+ \) is a congruence on \(S \). Moreover by Theorem 5, \(S/R \) is a distributive meet semilattice. Clearly the map \(a \mapsto [a]R \) is a homomorphism. Now let \(a \equiv 0(R) \). Then \(0 \land a = 0 \) implies \(a = a \land a = 0 \). Here \([0]R \) contains only 0 of \(S \). That is, \((0) \) is a complete congruence class modulo \(R \).

(ii) \(\Rightarrow \) (iii) is obvious as every distributive semilattice with 0 is 0-distributive.

(iii) \(\Rightarrow \) (i). Let \(\Theta \) be a congruence on \(S \) for which \((0) \) is the zero element of the 0-distributive semilattice \(S/\Theta \). Then \(x \land y = 0 = x \land z \) imply

\[
[x]\Theta \land [y]\Theta = [x \land y]\Theta = [x \land z]\Theta = [x]\Theta \land [z]\Theta .
\]

Thus, \([x]\Theta \land [y]\Theta = (0) = [x]\Theta \land [z]\Theta \). Hence by the 0-distributivity of \(S/\Theta \),

\[
[x]\Theta \land [d]\Theta = (0) , \text{ for some } [d]\Theta \geq [y]\Theta, [z]\Theta .
\]

This implies \(x \land d \in (0) \) and so \(x \land d = 0 \), where \(d \geq y, z \). Therefore, \(S \) is 0-distributive. \(\Box \)
References

