EXPERIMENTAL STUDY ON SHAPE AND RISE VELOCITY OF SMALL BUBBLES IN STAGNANT WATER

By

1A Mitra, 2P Bhattacharya, 3S Mukhopadhyay, 4K K Dhar

1College of Engineering & Management, Kolaghat. East Midnapur, India
2,4 National Institute of Technology, Agartala
3Indian Institute of Science Education and Research Kolkata, Nadia, India

Abstract:

This paper presents the results of an experimental study on the shape and rise velocity of small bubbles rising in stagnant water. Bubbles, generated at the bottom of the chamber holding water, rise through it. A high speed camera (1000 fps, Kodak, Model 1000 HRC) together with a 90 mm Macro lens is placed at a height of 60 cm from the bottom of the chamber. It is linked with a PC. The commercial software SigmaScan Pro 5.0 and Adobe Photoshop are used for image capturing and processing. Bubbles (diameters in the range 0.0245-5.903 cm) are generated at the bottom of the chamber holding the water. We find that bubbles have three steady shapes, a sphere, an ellipsoid and spherical cap in this diameter range. The experimentally determined rise velocity of bubble in the present investigation agrees well with the data available in the literature.

Keywords and Phrases: Bubble, Shape, Rise Velocity, Stagnant Water

1 Introduction.

Air bubbles rising in water may be widely observed in many industrial processes. Examples in chemical engineering include bubble columns, loop reactors, agitated stirred reactors, flotation, and fermentation reactors [1-11]. For the design of efficient two-phase reactors, detailed knowledge of bubble sizes and shapes, rise velocities, internal circulation, swarm behavior, bubble induced turbulence and mixing, and bubble size distribution (including coalescence and breakup) is of fundamental importance. So an understanding of the bubble characteristics will help the various hydrodynamic phenomena occurring in the industrial bubble column.
Bubble Shape: Normally, a bubble at rest assumes a spherical shape because surface tension minimises surface area for a given volume. Bubbles in free rise in infinite media by gravity are generally grouped into three categories based on its shape, as shown in Fig 1 [12]:

![Categories of bubbles based on shape](image)

Fig 1 Categories of bubbles based on shape

A rising bubble is described by its rise velocity, shape and motion behaviour. All three features are linked with the physical properties of the system, in particular the viscosity of the liquid phase, the flow and the interfacial bubble particularities (given by the possible presence of surfactants).

For bubbles rising freely in infinite media a graphical correlation [Fig 2] is developed by Grace et al. [13,14] in terms of the Eötvös number, Eö; Morton number, M; and Reynolds number, Re. This map is helpful in measuring the shapes of rising bubbles in Newtonian liquids, based on visual observations but perfect predictions are not possible to obtain from it. Therefore, an experimental study on the rise of the bubbles in stagnant fluid may be a starting point.
In the present investigation, experimental studies have been conducted in stagnant water in a vertical rectangular chamber. Bubbles are generated at the bottom of the chamber. Their shape and rise velocity are analyzed using video-image analysis.

2 Experimental Setup.

The experimental set-up is shown in Fig. 3. Experiments are carried out in an open top polycarbonate chamber having dimensions 34 cm × 28 cm × 200 cm (length, width, height) [15-19], which is large enough to neglect the wall effects. The chamber is filled with water. Bubbles, from the compressed air mains, are successively generated through an orifice, placed at the centre of the bottom of the column. The size of the bubbles and its frequency of generation are adjusted by flowmeters. A high speed camera (1000 fps, Kodak, Model 1000 HRC) together with a 90 mm Macro lens is placed at a height of 60 cm from the bottom of the chamber. It is linked with a PC. The commercial software SigmaScan Pro 5.0 and Adobe Photoshop are used for image capturing and processing. With this setup, we study the shape and rise velocity of bubbles rising through stagnant water.

Fig 3 Experimental Apparatus

A: Compressed air, B: Rotameters, C: Water supply, D: Valve, E: Orifice injection, F: Video camera, G: Halogen lamp, H: Image capturing & processing PC
Results and Discussion.

3.1 Bubble shape and diameter

The still images, captured by the camera, are analyzed by PC using the commercial software SigmaScan Pro 5.0 and Adobe Photoshop to determine the bubble shape (height and width). The bubble equivalent diameter \(d_{eq} \) is calculated as shown in Fig 4 [20]:

\[
\frac{d}{d_{eq}} = \frac{h}{w} \left(\frac{1}{3} \right)
\]

The measured values of the equivalent diameters of the bubbles are in the range 0.0245-5.903 cm. We find that bubbles have three steady shapes, a sphere, an ellipsoid and spherical cap in this diameter range.

3.2 Bubble Velocity.

The concept of the terminal velocity of a rising bubble is, to some extent, vague, as the forces (Archimedian force, the drag, the lift and the virtual mass forces) exerted on the bubble never balance each other. So the bubble motion always remains unsteady. However, if the bubble motion is considered in an infinite fluid-medium, after some period of time we may speak of a certain average “rise velocity”, whose change in time can be neglected. The averaging is meant here over a time interval much shorter than the period of time passed since the beginning of the bubble motion. Therefore, under the terminal velocity we understand such a time-averaged (“smoothed”) rise velocity of the bubble.

Bubble velocity is determined from the video images of the bubble. Once the bubble is released, the video camera moves up with the bubble recording the images as it rises.
Through various markers which are positioned at an interval of 15 cm from the bottom to a height of 1.8 meter. Velocity is measured for a 15 cm distance and is averaged for the entire 0.75 meter travel from 1.05 to 1.80 m along the scale.

The measured values of rise velocity of air bubbles (for various values of equivalent diameter) rising in stagnant water are presented in Figure 5 as a function of the bubble size. These data match well with those available in the literature [21, 22].

![Figure 5 Variation of rise velocity with equivalent diameter](image)

4 Conclusion.

In this experimental study, we report a video-image analysis on the shape and rise velocity of bubbles in stagnant water. A high speed camera (1000 fps, Kodak, Model 1000 HRC) together with a 90 mm Macro lens and the commercial software SigmaScan Pro 5.0 and Adobe Photoshop are used for image capturing and processing. Bubbles are generated at the bottom of the chamber holding the water. With this arrangement, bubble rise characteristics, namely, bubble shape and rise velocity are determined. The measured values of the equivalent diameters of the bubbles are in the range 0.0245-5.903 cm. We find that bubbles have three steady shapes, a sphere, an ellipsoid and spherical cap in this diameter range. The experimentally determined rise velocity of bubble in the present investigation agrees well with the data available in the literature.
References

